
Math 112 Discrete Mathematics Lecture Notes Part I 

 

CONSTANT COEFFICIENT LINEAR HOMOGENEOUS 
RECURRENCE RELATIONS 

 

 

RECURSIVE RELATION  

There are various ways of describing a sequence u0, u1, u2,... of real numbers. An 

obvious way is to express general term an term as an explicit function of n, that is  

un=f(n). For example, when we write  

an=n2 

one can compute any term of the sequence directly, such as  

a0=0, a1=1, a15=225, a312=970944,... . 

An alternative way to define the n-th term is to write a relation which gives n-th 

term by means of the preceding terms. For example, consider the sequence {bn} 

2    5    3.5   4.25   3.875, ... 

where each term, starting with b2, is equal to the arithmetic mean of the two preceding 

terms, that is  

bn = (bn-1+bn-2)/2. 

Such a sequence is said to be defined recursively (or inductively) and 

the expression un=F(un-1,un-2,...,un-t) which relates un to the preceding terms 

is called a recursive relation (or a recursion). 

 

  



INITIAL TERMS 

Consider the sequence {bn} defined above with the recursion bn=(bn-1+bn-2)/2. 

Notice that, in order to compute b10, we have to first compute b9 and b8. Then we have 

to compute b7 and b6 ... . This means that, when a sequence is defined recursively, in 

order to run necessary computations, we must be given a number of initial terms 

explicitly to start with. For the sequence above if b0 and b1 are given, then the rest of 

sequence can be computed using the recurrence.  

Explicitly given first few such terms of the sequence are called the 

initial terms of the sequence. 

It follows that the proper way of defining a sequence recursively is to give a 

recursive relation provided with sufficiently many initial terms. Thus, the expression 

b0=2, b1=5 and bn=(bn-1+bn-2)/2 for n>1 

defines the sequence {bn} without any ambiguity. 

Let {cn} be the sequence defined by setting c0=1 and cn=c0+...+cn-1 for n>0. Then 

first few terms of {cn} are  

c0 = 1  

c1 = c0 = 1 

c2 = c0+c1 = 2 

c3 = c0+c1+c2 = 4 

c4 = c0+c1+c2+c3 = 8 

... 

ORDER OF A RECURRENCE RELATION 

Returning back to above examples, in the recursion given for {bn} the farthest 

term related with bn is bn-2 and difference of indices of these terms is n-(n-2)=2. On the 

other hand, in the recursion for {cn}, the farthest term related with cn is c0 and 

difference of indices is n-0=n. 

When a sequence {un} is defined with a recursive relation, if the 

difference of n and the index of the farthest term related with un is constant 

(as in the case of {an}), this constant value is called the order (or degree) of 

the recursion. When the order is defined, the number of initial terms 

required to construct the sequence is equal to the order of recursion.  



Order of the recursion given for {bn} is 2, whereas order of the recursion for {cn} 

is undefined. 

Example 1. Let {un} be defined with un=un-1+un-2+...+u[n/2] , u0=1. Then 

u1=u0=1 

u2=u1=1 

u3=u2+u1=2 

u4=u3+u2=3 

u5=u4+u3+u2=6 

... 

and order of the recursion is undefined. 

 

Example 2. Order of the recursion vn=vn-1vn-2-vn-5 is 5 and to define the 
sequence {vn} uniquely, 5 initial terms should be given. Say v0=30,  
v1=20,  v2=10,  v3=6 and v4=5 then 

v5 = v4v3-v0 = 0 

v6 = v5v4-v1 = -20 

v7 = v6v5-v2 = -10 

v8 = v7v6-v3 = 194 

v9 = v8v7-v4 = -1945 

... 

 

SOLUTION OF A RECURRENCE RELATION 

Any sequence whose terms (except the initial terms) satisfy a recurrence relation 

is called a (particular) solution of that recurrence relation.  

To solve a recurrence relation, subject to sufficiently many initial terms, means 

to find an explicit expression for general term of the sequence whose terms (except 

the initial ones) satisfy the recurrence. 

Example 3. Consider the recurrence relation un = nun-1. For the initial 
term u0=3, we compute first few terms of the sequence:  

u1=1u0 = 3 = 3x1 

u2=2u1 = 6 = 3x2 

u3=3u2 = 18 = 3x6 

u4=4u3 = 72 = 3x24 

u5=5u4 = 360= 3x120 

... 

One can easily suggest that the general term is  

un=3⋅n! 



Of course this suggestion needs to be proved. Indeed, by mathematical 
induction one can easily prove the claim and we leave this part as an 
exercise. 

 

Example 4. Consider the recurrence an=nan-1+(n-1)! and the initial 
condition a1=1. Then we have  

u1 = 1  

u2 = 2⋅1 + 1! 

u3 = 3! + 3⋅1! + 2! 

u4 = 4! + 4⋅3⋅1 + 4⋅2⋅1 + 3! 

u5 = 5! + 5⋅4⋅3⋅1 + 5⋅4⋅2⋅1 + 5⋅4⋅3⋅1 + 4! 

u6 = 6! + 6⋅5⋅4⋅3⋅1 + 6⋅5⋅4⋅2⋅1 + 6⋅5⋅4⋅3⋅1 + 
6⋅4⋅3⋅2⋅1 + 5! 

We notice that u6 
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or  

𝑢6 = 6!𝐻6 

 

where Hn = 1 + 1/2 + 1/3 + … + 1/n. Then we may claim that 

 

un=n!Hn. 

Example 5. Find the solution of un=(n-1)(un-1+ un-2) subject to the initial 
conditions a0 = a1 = 1. To have an insight about the sequence we 
compute a few terms: 

u0 = 1 

u1 = 1  

u2 = 1(1 + 1) = 2 

u3 = 2(2 + 1) = 6 

u4 = 3(6 + 2) = 24 

u5 = 4(24 + 6) = 120 

u6 = 5(120 + 24) = 720 

We can suggest that un = n! 

Now we prove by induction that indeed un = n! 

 

Basic step is obvious since  

u0 = 1 = 0! 

u1 = 1 = 1!  

 

Now assume that the equality un = n! holds for all integers n with 

1 < n < k for some fixed integer k > 1. Then by recursion we have 

 

uk = (k-1)(uk-1+ uk-2) 

 

 



Assumption of induction implies that uk-1 = (k - 1)! and uk-2 = (k - 2)! so 

 

uk = (k-1)[(k - 1)!+ (k - 2)!] 

    = (k-1)[ (k - 2)!(k -1+1)] 

    =  (k-1)(k-2)!k 

    =  k! 

Consequently, our suggestion is correct.  

  

 

We have seen a recurrence relation given together with sufficiently many initial 

conditions determines a sequence uniquely. By changing initial terms, we can obtain different 

sequences all of whose terms satisfy the given recurrence. For example, each of t he sequences 

below are constructed according to the relation un = (un-1+un-2)/2: 

sequence  initial terms   first 6 terms of the sequence 

     {bn}  b0=2,   b1=5   2    5    3.5   4.25   3.875   4.0625 ...  

     {b’n}  b’0=5,   b’1=2   5    2    3.5   2.75   3.125   2.9375 ... 

     {b”n}  b”0=0,   b”1=4   0    16    8     12     10     11    ...  

     {b’”n}  b”’0=3,   b”’1=3  3    3     3     3     3     3 ...  

 

If we have given only a recurrence relation, not the initial terms, then it is possible to 

find infinitely many sequences (depending on choice of the initial terms), whose terms 

(starting with a specific index) satisfy the given recurrence.  

Example 6. Consider the recurrence relation of Example 3 without any 
initial terms provided. Then we may let u0=A. Then  

u1 = 1u0 = A  

u2 = 2u1 = 2A 

u3 = 3u2 = 6A 

u4 = 4u3 = 24A 

u5 = 5u4 = 120A 

... 

It is seen that we can claim that the general term is  

un=A(n+1)! 

Claim can be proved to be true by mathematical induction. 

The ‘A’ appearing in the solution is the parameter which is related with 
the initial term, in fact in this example A = a0. 

 



Example 7. Consider the recurrence relation un = 2un-1 - un-2. Depending 
on the initial terms u0 and u1 we compute the remaining terms as 

 

u2=2u1 - u0 = 2u1 - u0 

u3=2u2 – u1= 2(2u1 - u0) – u1 = 3u1-2u0 

u4=2u3 – u2 = 2(3u1 - 2u0) – (2u1 - u0) = 4u1 - 3u0 

u5=2u4 – u3 = 2(4u1 - 3u0) – (3u1 - 2u0) = 5u1 - 4u0 

... 

We claim that the general term is 

un=nu1-(n-1)u0 

which can be rearranged as un=n(u1- u0)+ u0 . If we put A = u1- u0 and we 
see that any (particular) solution of the recurrence un = 2un-1 - un-2 is of 
the form 

un=An+B. 

 

  

In the last example the expression un=An+B has the property that for any choice of 

parameters A and B, it gives general term of a particular solution (sequence) of the recursion 

un = 2un-1 - un-2. Such an expression is called the general solution of the given recurrence 

relation. 

To solve a given recurrence relation means to find the general solution, that is, an 

expression which depends on a certain number of parameters such that every particular 

solution of the recurrence relation can be obtained by assigning proper values to the se 

parameters. 

In general, to solve a recurrence relation is a difficult problem and we do not have general 

methods. In this course we will be interested in only a specific class of recurrence relations, so 

called ‘constant coefficient linear relations’.  You will be responsible of finding solutions of only 

this class. 
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