## Discrete probability, Part 2

Lecture Notes in Math 212 Discrete Mathematics


## Sergey Finashin

METU, Depart. of Math
April, 2020

## Uniform distribution

So far, we considered the problems in which all outcomes in the sample space $S$ have the same probability $\frac{1}{n}$, where $n=|S|$. In these cases, the probability of an event $E \subset S$ can be found as the sum of probabilities $p(s)=\frac{1}{n}$ of all elements $s \in E \quad p(E)=\sum_{s \in E} p(s)=\frac{|E|}{|S|}$.

## Uniform distribution of probabilities in a set $S$ with $n$ elements

assigns probability $\frac{1}{n}$ to each element of $S$. An experiment of selecting each element (outcome) $s \in S$ with the same probability $\frac{1}{n}$ is called selecting at random.

- As we flip a fair coin, outcomes "heads" and "tails" appear with the same probability $\frac{1}{2}$.
- As we roll a fair die, each outcome (any of the numbers $1,2, \ldots, 6$ ) appears with probability $\frac{1}{6}$.




## General probability distribution

Now we consider a more general situation, in which probabilities of different outcomes are not the same.


## Examples

- For a biased (unfair) coin H (heads) may appear two times more often than T (tails). This corresponds to probabilities $p(H)=\frac{2}{3}, p(T)=\frac{1}{3}$.
- A biased (loaded) die, with probability distribution $p(4)=p(6)=\frac{1}{4}$ and $p(1)=p(2)=p(3)=p(5)=\frac{1}{8}$, shows 4 and 6 twice more often then the other values.

On any sample space $S$ we consider a function $p: S \rightarrow \mathbb{R}$ called probability distribution, which assign to each outcome $s \in S$ its probability $p(s)$.

Probability distribution must satisfy the following two properties

- $0 \leq p(s) \leq 1$ for each $s \in S$ (positivity property),
- $\sum_{s \in S} p(s)=1$ (normalization: the sum of all probabilities is 1 ).


## Compound event probability

## Compound event

is an event consisting of two or more simple events which happened together. If $A$ and $B$ are simple events, then " $A$ and $B$ " is compound.

## Product rule

If two simple events are independent, then the probability of the compound event is the product: $p(A$ and $B)=p(A) \cdot p(B)$.

- If we flip a coin and roll dice, then the probability to get
" H " (heads) and " 6 " is $p(H) \cdot p(6)=\frac{1}{2} \cdot \frac{1}{6}=\frac{1}{12}$.
- If we flip a fair coin 3 times, then the probability to get "HHH" is
(2) m $p(H H H)=p(H)^{3}=\frac{1}{8}$. Similarly, $p(H H T)=\frac{1}{8}$, etc.
- If a coin is biased with $p(H)=\frac{2}{3}, p(T)=\frac{1}{3}$, then $p(H H H)=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$, but $p(H H T)=\left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3}=\frac{4}{27}, p(H T T)=\frac{2}{27}$, etc.

If events $A$ and $B$ disjoint (exclusive), then $p(A$ and $B)=0$ (disjoint events cannot happen at the same time).

## Examples with unfair coins and dies

## Unfair coin

A coin is biased with the probability of heads $\frac{2}{3}$. What is the probability that exactly three heads come up when the coin is flipped five times ? Solution. The outcomes with three heads are HHHTT, HHTHT,..., totally $\binom{5}{3}=10$ possibilities (from 5 flips we choose 3 which give heads). The probability of each of these 10 outcomes is $\left(\frac{2}{3}\right)^{3} \cdot\left(\frac{1}{3}\right)^{2}=\frac{8}{241}$, so, totally we obtain probability $10 \cdot \frac{8}{241}=\frac{80}{241}$

## Unfair die

A die is unfair: 6 appears twice more often than any other number. What is the probability to obtain in sum 10 after rolling this die twice ?
Solution. Let us denote by $p$ the probability $p(1)=p(2)=\cdots=p(5)$. Then $p(6)=2 p$ and since $p(1)+\cdots+p(6)=5 p+2 p=1$ we obtain $p=\frac{1}{7}$. The sum 10 can be obtained as $6+4,5+5$, and $4+6$, with the corresponding probabilities $(2 p) \cdot p, p \cdot p$, and $p \cdot(2 p)$. Totally, we obtain probability $2 p^{2}+p^{2}+2 p^{2}=5 p^{2}=5\left(\frac{1}{7}\right)^{2}=\frac{5}{49}$.

## Picking marbles in a bowl

## Consecutive and alternative choice of marbles

- A bowl contains 12 red marbles, 5 blue marbles and 13 yellow marbles. Find the probability of drawing a blue marble and then a yellow one. Solution. The probability to get a blue marble after the first drawing is $\frac{5}{30}=\frac{1}{6}$, because there are totally 30 marbles. Since after the first drawing 29 marble remains, the probability to get a yellow marble after the second drawing is $\frac{13}{29}$. So, the answer is $\frac{1}{6} \cdot \frac{13}{29}=\frac{13}{174}$.
- One bowl contains 4 red marbles and 3 blue ones. Another bowl contains two red and one blue marbles. One chooses randomly any of the two bawl and picks a marble in it. Find the probability that this marble is red.
Solution. By the first choice, one of two bowls is chosen: probability to choose each one is $\frac{1}{2}$. By the second choice a marble is chosen. It will be red with probability $\frac{4}{7}$ in the first case and $\frac{2}{3}$ in the second. Hence, the overall probability to choose a red marble is $\frac{1}{2} \cdot \frac{4}{7}+\frac{1}{2} \cdot \frac{2}{3}=\frac{2}{7}+\frac{1}{3}=\frac{13}{21}$.

