Name:

1	
2	
3	
4	
5	
Σ	

Student number:

METU MATH 111, Midterm 1

Thursday, November 3, 2011, at 17:40 (100 minutes), totally 60 points
Instructors: E.Emelyanov, G.Ercan, S.Finashin, E.Solak
Instructions: Please, show clearly the logic of your solutions.
Problem 1. $(4+4+4 \mathbf{p t s})$ (a) Is the statement $(P \leftrightarrow Q) \wedge(P \wedge \neg Q)$ a tautology, a contradiction, or neither? (Explain.)
(b) Show that statement $P \rightarrow(Q \vee R)$ is equivalent to $(P \wedge \neg Q) \rightarrow R$.
(c) Record (using the logical symbols) the following claim.

For every a, the equation $a x^{2}+4 x-2=0$ has at least one solution iff $a \geq-2$.

Problem 2. $(\mathbf{3}+\mathbf{3}+\mathbf{3}+\mathbf{3} \mathbf{~ p t s})$ Suppose that $P(x, y)$ means " x divides y ", and the universe is the set of positive integers. Determine whether the following statements are true or false. Explain (briefly).
(a) $\exists y \forall x P(x, y)$
(b) $\exists x \forall y P(x, y)$
(c) $\exists x \exists y P(x, y)$
(d) $\forall x \forall y P(x, y)$

Problem 3. ($6+6 \mathrm{pts}$) Negate the following statements and simplify the result (the answer may contain negation only of P, Q, and R).
(a) $(P \vee \neg Q) \wedge \neg R$
(b) $\forall x(P(x) \rightarrow Q(x))$

Problem 4. (4+8 pts) Suppose that A, B, and C are sets.
(a) State that $A \cap B \cap C \neq \varnothing$ (use an appropriate quantifier and logical connectives).
(b) Prove that $A \backslash(B \backslash C)=(A \backslash B) \cup(A \cap C)$. Express clearly the logic of your proof!

Problem 5. ($6+6 \mathrm{pts}$) Prove the following propositions. (Express clearly your logic). (a) If n is an integer and $n^{3}+5$ is odd, then n is even.
(b) There does not exist a positive real number a such that $a+\frac{1}{a}<2$.

