M ET U
 Department of Mathematics

Group	Fundamentals of Mathematics Midterm 1			List No.
 Code : Math 111 Acad. Year : 2012 Semester $:$ Fall Instructor $:$ S.Finashin, E.Solak, M.Kuzucuoğlu, O.Küçüksakall. Date : November 1, 2012 Time $: 17: 40$ Duration $: 90$ minutes		Last Name : Name : Student No. : Department : Section $:$ Signature :		
		6 QUESTIONS ON 4 PAGES 60 TOTAL POINTS		
${ }^{2}$	$\left.{ }^{3} \times{ }^{4}\right]^{5}{ }^{6}$			

1. (10pts) Determine if the following argument is valid or not. If it is valid give a derivation, if it is not, show why.

$$
\begin{aligned}
& (\neg P \vee \neg Q) \rightarrow R \\
& R \rightarrow T \\
& \frac{\neg T}{P}
\end{aligned}
$$

Solution

(1) $(\neg P \vee \neg Q) \rightarrow R$
(2) $R \rightarrow T$
(3) $\neg T$
(4) $\neg R$
(2), (3), Modus Tollens
(5) $\neg(\neg P \vee \neg Q)$ (1), (4), Modus Tollens
(6) $\neg \neg P \wedge \neg \neg Q$ (5), De Morgan Law
(7) $P \wedge Q$
(6), Double negation
(8) P
(7), Simplification
2. (10pts) Using truth tables, determine if the statement $P \leftrightarrow(P \vee(P \wedge \neg Q))$ is a tautology, a contradiction, or neither.

Solution

P	Q	P	\leftrightarrow	$(P$	\vee	$(P$	\wedge	$\neg Q))$
T	T	T	\underline{T}	T	T	T	F	F
T	F	T	\underline{T}	T	T	T	T	T
F	T	F	\underline{T}	F	F	F	F	T
F	F	F	\underline{T}	F	F	F	F	T

Since the statement takes only "True" value, it is a tautology.
3. (10pts) Simplify the negation $\neg[\forall x \exists y(P(x) \wedge Q(y)) \rightarrow \neg R(x, y)]$ by finding an equivalent statement that does not contain the negation symbol " \neg ". Show the steps of your solution.

Solution

$$
\begin{aligned}
& \neg[\forall x \exists y(P(x) \wedge Q(y)) \rightarrow \neg R(x, y)] \Longleftrightarrow \\
& \exists x \neg[\exists y(P(x) \wedge Q(y)) \rightarrow \neg R(x, y)] \Longleftrightarrow \\
& \exists x \forall y \neg[(P(x) \wedge Q(y)) \rightarrow \neg R(x, y)] \Longleftrightarrow \\
& \exists x \forall y \neg[\neg(P(x) \wedge Q(y)) \vee \neg R(x, y)] \Longleftrightarrow \\
& \exists x \forall y \neg \neg(P(x) \wedge Q(y)) \wedge \neg \neg R(x, y) \Longleftrightarrow \\
& \exists x \forall y(P(x) \wedge Q(y)) \wedge R(x, y)
\end{aligned}
$$

4. (10pts) Let x and y be positive integers. Determine whether the following statements are true or false. Explain your answers briefly.
5. $\forall x \forall y(x<y)$

Solution

False. If $x=2$ and $y=1$, then $x<y$ is not true.
2. $\forall x \exists y(x<y)$

Solution

True. Given x, choose $y=x+1$. Then $x<y$.
3. $\exists y \forall x(x<y)$

Solution

False. Suppose such y exists. Then for $x=y+1$, the statement $x<y$ will be false. This is a contradiction.
4. $\exists x \exists y(x<y)$

Solution

True. Choose $x=1$ and $y=2$, then $x<y$ is true.
5. $\forall y \exists x(x<y)$

Solution

False. If $y=1$ then there is no positive integer x such that $x<y$.
6. (10pts) Let a and b be integers. Prove that $a+b$ is even if and only if $a^{2}+b^{2}$ is even. (Pay attention to logical presentation of your solution.)

Solution

(\Rightarrow) : Suppose that $a+b$ is even. Then there exists an integer k such that $a+b=2 k$. We have $a^{2}+2 a b+b^{2}=4 k^{2}$ and therefore $a^{2}+b^{2}=2\left(2 k^{2}-a b\right)$. We conclude that $a^{2}+b^{2}$ is even.
(\Leftarrow) : We prove this part by contrapositive. Suppose that $a+b$ is odd. Then there exists an integer k such that $a+b=2 k+1$. We have $a^{2}+2 a b+b^{2}=4 k^{2}+4 k+1$ and therefore $a^{2}+b^{2}=2\left(2 k^{2}+2 k-a b\right)+1$. We conclude that $a^{2}+b^{2}$ is odd.
5. (10pts) Assume that a is an integer such that $a^{2}-1$ is not divisible by 3 . Prove that a is divisible by 3 .

Solution

Suppose that a is an integer such that $a^{2}-1$ is not divisible by 3 . We use proof by contradiction. Assume that a is an integer not divisible by 3 . There are two cases. Either $a=3 k+1$ or $a=3 k+2$ for some integer k. If $a=3 k+1$, then $a^{2}-1=9 k^{2}+6 k+1-1=3\left(3 k^{2}+2 k\right)$ is divisible by 3 , a contradiction. Similarly if $a=3 k+2$, then $a^{2}-1=9 k^{2}+12 k+4-1=3\left(3 k^{2}+4 k+1\right)$ is divisible by 3 , another contradiction. Therefore we conclude that if $a^{2}-1$ is not divisible by 3 , then a must be divisible by 3 .

