M E T U Department of Mathematics

Group	Funda	mentals of Mathematics	List No.			
		Midterm 1				
M.Kuzuc	: Fall : S.Finashin, E.Solak, oğlu, O.Küçüksakallı.	Department : Section	ent No. : on :			
Date Time Duration	: November 1, 2012 : 17:40 : 90 minutes	6 QUESTIONS ON 4 PAGES 60 TOTAL POINTS				
· 2						

1. (10pts) Determine if the following argument is valid or not. If it is valid give a derivation, if it is not, show why.

$$\begin{array}{l} (\neg P \lor \neg Q) \to R \\ R \to T \\ \hline \neg T \\ \hline P \end{array}$$

Solution

$(1) \ (\neg P \lor \neg Q) \to R$								
(2) $R \to T$								
(3) $\underline{\neg T}$								
(4) $\neg R$	(2), (3), Modus Tollens							
$(5) \neg (\neg P \lor \neg Q)$	(1), (4), Modus Tollens							
$(6) \neg \neg P \land \neg \neg Q$	(5), De Morgan Law							
(7) $P \wedge Q$	(6), Double negation							
(8) P	(7), Simplification							

2. (10pts) Using truth tables, determine if the statement $P \leftrightarrow (P \vee (P \wedge \neg Q))$ is a tautology, a contradiction, or neither.

Solution

P	$Q \mid$	P	\leftrightarrow	(P	\vee	(P	\wedge	$\neg Q))$
T	$T \mid$	T	\underline{T}	T	T	T	F	F
T	$F \mid$	T	\underline{T}	T	T	T	T	T
F	$T \mid$	F	\underline{T}	F	F	F	F	T
F	$F \mid$	F	\underline{T}	F	F	F	F	T

Since the statement takes only "True" value, it is a tautology.

3. (10pts) Simplify the negation $\neg[\forall x \exists y \ (P(x) \land Q(y)) \rightarrow \neg R(x, y)]$ by finding an equivalent statement that does not contain the negation symbol " \neg ". Show the steps of your solution.

Solution

$$\neg [\forall x \exists y \ (P(x) \land Q(y)) \to \neg R(x,y)] \iff$$
$$\exists x \ \neg [\exists y \ (P(x) \land Q(y)) \to \neg R(x,y)] \iff$$
$$\exists x \ \forall y \ \neg [(P(x) \land Q(y)) \to \neg R(x,y)] \iff$$
$$\exists x \ \forall y \ \neg [\neg (P(x) \land Q(y)) \lor \neg R(x,y)] \iff$$
$$\exists x \ \forall y \ \neg \neg (P(x) \land Q(y)) \land \neg \neg R(x,y) \iff$$
$$\exists x \ \forall y \ (P(x) \land Q(y)) \land R(x,y)$$

4. (10pts) Let x and y be positive integers. Determine whether the following statements are true or false. Explain your answers briefly.

1. $\forall x \ \forall y \ (x < y)$

Solution

False. If x = 2 and y = 1, then x < y is not true.

2. $\forall x \exists y \ (x < y)$

Solution

True. Given x, choose y = x + 1. Then x < y.

3. $\exists y \ \forall x \ (x < y)$

Solution

False. Suppose such y exists. Then for x = y + 1, the statement x < y will be false. This is a contradiction.

4. $\exists x \exists y \ (x < y)$

Solution

True. Choose x = 1 and y = 2, then x < y is true.

5. $\forall y \exists x \ (x < y)$

Solution

False. If y = 1 then there is no positive integer x such that x < y.

6. (10pts) Let a and b be integers. Prove that a + b is even if and only if $a^2 + b^2$ is even. (Pay attention to logical presentation of your solution.)

Solution

(⇒): Suppose that a + b is even. Then there exists an integer k such that a + b = 2k. We have $a^2 + 2ab + b^2 = 4k^2$ and therefore $a^2 + b^2 = 2(2k^2 - ab)$. We conclude that $a^2 + b^2$ is even.

(\Leftarrow): We prove this part by contrapositive. Suppose that a+b is odd. Then there exists an integer k such that a+b=2k+1. We have $a^2+2ab+b^2=4k^2+4k+1$ and therefore $a^2+b^2=2(2k^2+2k-ab)+1$. We conclude that a^2+b^2 is odd.

5. (10pts) Assume that a is an integer such that $a^2 - 1$ is not divisible by 3. Prove that a is divisible by 3.

Solution

Suppose that a is an integer such that $a^2 - 1$ is not divisible by 3. We use proof by contradiction. Assume that a is an integer not divisible by 3. There are two cases. Either a = 3k + 1 or a = 3k + 2 for some integer k. If a = 3k + 1, then $a^2 - 1 = 9k^2 + 6k + 1 - 1 = 3(3k^2 + 2k)$ is divisible by 3, a contradiction. Similarly if a = 3k + 2, then $a^2 - 1 = 9k^2 + 12k + 4 - 1 = 3(3k^2 + 4k + 1)$ is divisible by 3, another contradiction. Therefore we conclude that if $a^2 - 1$ is not divisible by 3, then a must be divisible by 3.