M E T U Department of Mathematics

Group	Fundar	nentals of Mathematics	List No.
		Midterm 2	
	: 2013 : Fall : G.Ercan, S.Finashin uoğlu, Ö.Kücüksakallı	Last Name:Name:StudentDepartmentSignature	
	: December 19, 2013 : 17:40 : 100 minutes	6 QUESTIONS ON 4 PAGES 60 TOTAL POINTS	
1 2	3 4 5 6		

1. (12pts) Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function defined by f(x) = 2x + 3. Define a relation R on \mathbb{Z} by xRy if and only if $f(x) \equiv f(y) \pmod{5}$ for any x, y in \mathbb{Z} .

(a) Prove that R is an equivalence relation on \mathbb{Z} .

(b) Describe the R-equivalence class [0] explicitly.

2. (10pts) (a) Define the function $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 7x - 2. Determine whether f is injective, surjective and bijective.

(b) Define the function $g : \mathbb{Q} \to \mathbb{Q}$ by g(x) = 7x - 2. Determine whether g is injective, surjective and bijective.

3. (10pts) Prove that a function $f: A \to B$ has a left inverse if and only if f is injective.

4. (6pts) Give an example of subsets A, B and C of \mathbb{Z} such that $A - (B - C) \neq (A - B) - C$.

5. (10pts) Prove that if A, B and C are sets, then $A \times (B - C) = (A \times B) - (A \times C)$.

6. (12pts) Consider the poset $(\mathcal{P}(\mathbb{Z}), \subseteq)$ and let $A = \{\{4\}, \{1,2\}, \{2,3\}, \{3,4\}, \{1,3,4\}\}.$

(a) Draw a Hasse diagram for the poset (A,\subseteq) .

(b) List all maximal elements of (A, \subseteq) .

(c) List all minimal elements of (A, \subseteq) .

(d) Are there the greatest and the least elements in (A, \subseteq) .

(e) Find the least upper bound and the greatest lower bound for A in the poset $(\mathcal{P}(\mathbb{Z}), \subseteq)$, if any.