M ET U
 Department of Mathematics

Group	Fundamentals of Mathematics Midterm 2			List No.
Code $\quad:$ Math 111 Acad. Year : 2013 Semester $:$ Fall Instructor $:$ G.Ercan, S.Finashin M.Kuzucuoğlu, Ö.Küçüksakallı. Date : December 19, 2013 Time $: 17: 40$ Duration : 100 minutes		Last Name : Name : Student No. : Department : Section : Signature :		
		6 QUESTIONS ON 4 PAGES 60 TOTAL POINTS		
${ }^{2}$	$7^{4}{ }^{5}{ }^{6}$			

1. (12pts) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined by $f(x)=2 x+3$. Define a relation R on \mathbb{Z} by $x R y$ if and only if $f(x) \equiv f(y)(\bmod 5)$ for any x, y in \mathbb{Z}.
(a) Prove that R is an equivalence relation on \mathbb{Z}.
(b) Describe the R-equivalence class [0] explicitly.
2. (10pts) (a) Define the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(x)=7 x-2$. Determine whether f is injective, surjective and bijective.
(b) Define the function $g: \mathbb{Q} \rightarrow \mathbb{Q}$ by $g(x)=7 x-2$. Determine whether g is injective, surjective and bijective.
3. (10pts) Prove that a function $f: A \rightarrow B$ has a left inverse if and only if f is injective.
4. (6pts) Give an example of subsets A, B and C of \mathbb{Z} such that $A-(B-C) \neq(A-B)-C$.
5. (10pts) Prove that if A, B and C are sets, then $A \times(B-C)=(A \times B)-(A \times C)$.
6. (12pts) Consider the poset $(\mathcal{P}(\mathbb{Z}), \subseteq)$ and let $A=\{\{4\},\{1,2\},\{2,3\},\{3,4\},\{1,3,4\}\}$.
(a) Draw a Hasse diagram for the poset (A, \subseteq).
(b) List all maximal elements of (A, \subseteq).
(c) List all minimal elements of (A, \subseteq).
(d) Are there the greatest and the least elements in (A, \subseteq).
(e) Find the least upper bound and the greatest lower bound for A in the $\operatorname{poset}(\mathcal{P}(\mathbb{Z}), \subseteq)$, if any.
