# METU MATHEMATICS DEPARTMENT MATH 111 - MAKEUP EXAM - FALL 2013 

ERCAN, FINASHIN, KUZUCUOĞLU, KÜÇÜKSAKALLI<br>JANUARY 23, 2014

Question 1. (20pts) Determine which of the following sets are countable. Explain briefly.

- $A=\mathbb{Z} \times \mathbb{Q}$.
- $B=\{(a, b): a \in \mathbb{Q}, b \in \mathbb{R}-\mathbb{Q}\}$.
- $C=\mathcal{P}(\mathbb{R})$, the power set of $\mathbb{R}$.
- $D=\{A \subseteq \mathbb{N}:|A|>1\}$.
- $E=\{A \subseteq \mathbb{N}:|A| \leq 1\}$.

Question 2. (12pts) Prove that $2^{n}>n^{3}$ for every natural number $n \geq 10$.
Question 3. (12pts) Suppose a sequence is defined as follows: $a_{1}=1, a_{2}=3$ and $a_{k}=2 a_{k-1}+a_{k-2}$ for all integers $k \geq 3$. Prove that $a_{n}$ is odd for all natural numbers $n \in \mathbb{N}$ using induction.

Question 4. (12pts) Suppose $A$ and $B$ are sets and $f: A \rightarrow B$ is a function. Let $R$ be an equivalence relation on $B$. Let $S$ be the relation on $A$ defined by

$$
a_{1} S a_{2} \Longleftrightarrow f\left(a_{1}\right) R f\left(a_{2}\right)
$$

Show that $S$ is an equivalence relation on $A$.
Question 5. (12pts) Suppose $R_{1}$ and $R_{2}$ are partial orders on $A$. For each part, give either a proof or a counterexample to justify your answer.

- Must $R_{1} \cap R_{2}$ be a partial order on $A$ ?
- Must $R_{1} \cup R_{2}$ be a partial order on $A$ ?

Question 6. (12pts) Let $A$ and $B$ be sets. For each part, give either a proof or a counterexample to justify your answer.

- $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
- $\mathcal{P}(A \times B)=\mathcal{P}(A) \times \mathcal{P}(B)$.

