# M ET U <br> Department of Mathematics 



1. (10pts) Using truth tables, determine if the statement $(P \rightarrow \neg Q) \leftrightarrow(R \rightarrow(\neg Q \vee P))$ is a tautology, a contradiction, or neither.

## Solution

| $P$ | $Q$ | $R$ | $(P$ | $\rightarrow$ | $\neg Q)$ | $\leftrightarrow$ | $(R$ | $\rightarrow$ | $(\neg Q$ | $\vee$ | $P))$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ | $T$ | $T$ | $T$ | $F$ | $F$ | $\underline{F}$ | $T$ | $T$ | $F$ | $T$ | $T$ |
| $T$ | $T$ | $F$ | $T$ | $F$ | $F$ | $\underline{F}$ | $F$ | $T$ | $F$ | $T$ | $T$ |
| $T$ | $F$ | $T$ | $T$ | $T$ | $T$ | $\underline{T}$ | $T$ | $T$ | $T$ | $T$ | $T$ |
| $T$ | $F$ | $F$ | $T$ | $T$ | $T$ | $\underline{T}$ | $F$ | $T$ | $T$ | $T$ | $T$ |
| $F$ | $T$ | $T$ | $F$ | $T$ | $F$ | $\underline{F}$ | $T$ | $F$ | $F$ | $F$ | $F$ |
| $F$ | $T$ | $F$ | $F$ | $T$ | $F$ | $\underline{T}$ | $F$ | $T$ | $F$ | $F$ | $F$ |
| $F$ | $F$ | $T$ | $F$ | $T$ | $T$ | $\underline{T}$ | $T$ | $T$ | $T$ | $T$ | $F$ |
| $F$ | $F$ | $F$ | $F$ | $T$ | $T$ | $\underline{T}$ | $F$ | $T$ | $T$ | $T$ | $F$ |

Since the formula takes both values "T" and "F", the statement is neither a tautology nor a contradiction.
2. (10pts) Assume that $x$ and $y$ take real values. Determine whether the following statements (1)-(4) are true or false. Explain your answers briefly.

$$
P(x, y)=" x^{2}+y=5^{\prime \prime}
$$

1. $\exists x \forall y P(x, y)$

Solution: "There exists $x$ such that for all $y$ we have $x^{2}+y=5$."
This is false, because for any given value of $x$ the identity $x^{2}+y=5$ is true just for one (and not all) values of $y$.
2. $\forall y \exists x P(x, y)$

Solution: "For all $y$ there exists $x$ such that $x^{2}+y=5$."
This is false, because if we take $y>5$ then $x^{2}=5-y<0$, and we cannot find any $x$ satisfying the identity.
3. $\exists y \forall x P(x, y)$

Solution: "There exists $y$ such that for all $x$ we have $x^{2}+y=5$."
This is false, because for any given value of $y$ the identity $x^{2}+y=5$ is true not more than for two (and not all) values of $x$.
4. $\forall x \exists y P(x, y)$

Solution: "For all $x$ there exists $y$ such that $x^{2}+y=5$."
This is true, because for any given value of $x$ we choose $y=5-x^{2}$, which is a real number, and the required identity is satisfied.
3. (10pts) Give a derivation for the following argument (which is known to be valid).

$$
\begin{aligned}
& P \rightarrow(Q \rightarrow R) \\
& T \rightarrow Q \\
& P \vee S \\
& \neg S \\
& \neg R \rightarrow \neg T
\end{aligned}
$$

## Solution

(1) $P \rightarrow(Q \rightarrow R)$
(2) $T \rightarrow Q$
(3) $P \vee S$
(4) $\neg S$
(5) $P \quad$ (3), (4), Modus Tollendo Ponens
(6) $Q \rightarrow R \quad$ (1), (6), Modus Ponens
(7) $T \rightarrow R \quad$ (2), (6), Hypothetical Syllogism
(8) $\neg R \rightarrow \neg T \quad$ (7), Contrapositive
4. (10pts) Let $a, b$ and $c$ be integers. Prove that if $a$ does not divide $b c$, then $a$ does not divide $b$.

Solution Proof is by contrapositive. Namely we show that if $a$ divides $b$, then $a$ divides $b c$. So assume that $a$ divides $b$. Then there exists $k \in \mathbb{Z}$, such that $b=a k$. Then multiplying both sides of the equality by $c$ we obtain

$$
\begin{aligned}
b c & =(a k) c \\
& =a(k c) \quad \text { by associativity in } \mathbb{Z}
\end{aligned}
$$

Since $k c \in \mathbb{Z}$. This shows that $a$ divides $b c$. Hence we are done.
5. (10pts) Prove that the following three statements about an integer $n$ are equivalent.

1. $3 \nmid n$
2. $3 \mid n^{2}-1$
3. there exists an integer $k$ such that $n=3 k+1$, or $n=3 k+2$.

Solution We will show that these statements are equivalent by showing $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$.
$(1 \Rightarrow 3)$ Suppose that $n$ is not divisible by 3. Then there are two possibilities. Either $n=3 k+1$ or $n=3 k+2$ for some integer $k$.
$(3 \Rightarrow 2)$ If $n=3 k+1$, then $n^{2}-1=9 k^{2}+6 k$ and it is divisible by 3 . If $n=3 k+2$, then $n^{2}-1=9 k^{2}+12 k$ and it is divisible by 3 as well. We conclude that $n^{2}-1$ is divisible by 3 in either case.
$(2 \Rightarrow 1)$ We prove this part by contrapositive. Suppose that 3 divides $n$. Then there exists an integer $k$ such that $n=3 k$. Thus $n^{2}-1=9 k^{2}-1$ and it is not divisible by 3 .
6. (10pts) Let $A, B$ and $C$ be sets. Prove that if $A \subseteq B$ and $B \cap C=\varnothing$, then $A \cap C=\varnothing$.

Solution (Proof by contradiction) Assume that $A \cap C$ is nonempty. Then there is an element $x \in A \cap C$. It follows that $x \in A$ and $x \in C$. Since $A \subseteq B$, we must have $x \in B$. Now $x \in B$ and $x \in C$. As a result $x \in B \cap C$. However this is contradiction to the hypothesis $B \cap C=\varnothing$.

Solution (Direct Proof) If $A$ is the empty set then the conclusion $A \cap C=\varnothing$ is always true and there is nothing to prove. If $A$ is not empty, then pick an arbitrary element $a \in A$. Since $A \subseteq B$, we must have $a \in B$. Using the hypothesis $B \cap C=\varnothing$, we find that $a \notin C$. Recall that $a$ is an arbitrary element of $A$ and it is not in $C$. Therefore we can conclude that $A \cap C=\varnothing$.

