M E T U Department of Mathematics

Group	Fundamentals of Mathematics							List No.	
	Midterm 1								
Code	: Mati	h 111		La	st Name	:			
Acad. Year	: 2013 : Fall		Na	ame	o :				
Semester				nortmon	÷ •	Castion	Castion ·		
Instructor	: G.E	rcan, S	.Finashin		epartmen	.	Section	•	
M.Kuzuci	uoğlu, (. Nov	O.Kuç	üksakallı. 7 2012	Sig	gnature	:			
Date	: November 7, 2013 : 17:40 : 100 minutos			6 QUESTIONS ON 6 PAGES					
Duration				60 TOTAL POINTS					
	3	4	5 6	I			00101111111	m	
-		-							

1. (10pts) Using truth tables, determine if the statement $(P \to \neg Q) \leftrightarrow (R \to (\neg Q \lor P))$ is a tautology, a contradiction, or neither.

Solution

P	Q	$R \mid$	(P	\rightarrow	$\neg Q)$	\leftrightarrow	(R	\rightarrow	$(\neg Q$	\vee	P))
T	T	$T \mid$	T	F	F	\underline{F}	T	T	F	T	T
T	T	$F \mid$	T	F	F	\underline{F}	F	T	F	T	T
T	F	$T \mid$	T	T	T	\underline{T}	T	T	T	T	T
T	F	$F \mid$	T	T	T	\underline{T}	F	T	T	T	T
F	T	$T \mid$	F	T	F	\underline{F}	T	F	F	F	F
F	T	$F \mid$	F	T	F	\underline{T}	F	T	F	F	F
F	F	$T \mid$	F	T	T	\underline{T}	T	T	T	T	F
F	F	$F \mid$	F	T	T	\underline{T}	F	T	T	T	F

Since the formula takes both values "T" and "F", the statement is neither a tautology nor a contradiction.

2. (10pts) Assume that x and y take real values. Determine whether the following statements (1)-(4) are true or false. Explain your answers briefly.

$$P(x,y) = "x^2 + y = 5''$$

1. $\exists x \ \forall y \ P(x, y)$

Solution: "There exists x such that for all y we have $x^2 + y = 5$."

This is false, because for any given value of x the identity $x^2 + y = 5$ is true just for one (and not all) values of y.

2. $\forall y \exists x P(x,y)$

Solution: "For all y there exists x such that $x^2 + y = 5$."

This is false, because if we take y > 5 then $x^2 = 5 - y < 0$, and we cannot find any x satisfying the identity.

3. $\exists y \ \forall x \ P(x,y)$

Solution: "There exists y such that for all x we have $x^2 + y = 5$."

This is false, because for any given value of y the identity $x^2 + y = 5$ is true not more than for two (and not all) values of x.

4. $\forall x \exists y P(x, y)$

Solution: "For all x there exists y such that $x^2 + y = 5$."

This is true, because for any given value of x we choose $y = 5 - x^2$, which is a real number, and the required identity is satisfied.

3. (10pts) Give a derivation for the following argument (which is known to be valid).

$$P \to (Q \to R)$$

$$T \to Q$$

$$P \lor S$$

$$\neg S$$

$$\neg R \to \neg T$$

Solution

(1) $P \to (Q \to$	R)	
$(2) \ T \to Q$		
$(3) \ P \lor S$		
(4) $\underline{\neg S}$		
(5) P	(3), (4),	$Modus\ Tollendo\ Ponens$
$(6) \ Q \to R$	(1), (6),	Modus Ponens
(7) $T \to R$	(2), (6),	Hypothetical Syllogism
$(8) \ \neg R \to \neg T$	(7),	Contrapositive

4. (10pts) Let a, b and c be integers. Prove that if a does not divide bc, then a does not divide b.

Solution Proof is by contrapositive. Namely we show that if a divides b, then a divides bc. So assume that a divides b. Then there exists $k \in \mathbb{Z}$, such that b = ak. Then multiplying both sides of the equality by c we obtain

bc = (ak)c= a(kc) by associativity in \mathbb{Z}

Since $kc \in \mathbb{Z}$. This shows that a divides bc. Hence we are done.

- 5. (10pts) Prove that the following three statements about an integer n are equivalent.
 - 1. $3 \nmid n$
 - 2. $3 \mid n^2 1$
 - 3. there exists an integer k such that n = 3k + 1, or n = 3k + 2.

Solution We will show that these statements are equivalent by showing $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$.

 $(1 \Rightarrow 3)$ Suppose that n is not divisible by 3. Then there are two possibilities. Either n = 3k + 1 or n = 3k + 2 for some integer k.

 $(3 \Rightarrow 2)$ If n = 3k+1, then $n^2 - 1 = 9k^2 + 6k$ and it is divisible by 3. If n = 3k+2, then $n^2 - 1 = 9k^2 + 12k$ and it is divisible by 3 as well. We conclude that $n^2 - 1$ is divisible by 3 in either case.

 $(2 \Rightarrow 1)$ We prove this part by contrapositive. Suppose that 3 divides n. Then there exists an integer k such that n = 3k. Thus $n^2 - 1 = 9k^2 - 1$ and it is not divisible by 3.

6. (10pts) Let A, B and C be sets. Prove that if $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Solution (Proof by contradiction) Assume that $A \cap C$ is nonempty. Then there is an element $x \in A \cap C$. It follows that $x \in A$ and $x \in C$. Since $A \subseteq B$, we must have $x \in B$. Now $x \in B$ and $x \in C$. As a result $x \in B \cap C$. However this is contradiction to the hypothesis $B \cap C = \emptyset$.

Solution (Direct Proof) If A is the empty set then the conclusion $A \cap C = \emptyset$ is always true and there is nothing to prove. If A is not empty, then pick an arbitrary element $a \in A$. Since $A \subseteq B$, we must have $a \in B$. Using the hypothesis $B \cap C = \emptyset$, we find that $a \notin C$. Recall that a is an arbitrary element of A and it is not in C. Therefore we can conclude that $A \cap C = \emptyset$.