METU MATHEMATICS DEPARTMENT MATH 111 - RESIT EXAM - FALL 2013

ERCAN, FINASHIN, KUZUCUOĞLU, KÜÇÜKSAKALLI
FEBRAUARY 5-7, 2014

Question 1. Let a, b and p be natural numbers such that $p \geq 2$. Suppose that if $p \mid a b$ then $p \mid a$ or $p \mid b$. Prove that \sqrt{p} is an irrational number.

Question 2. Let $f: A \rightarrow B$ be a function. If Y_{1} and Y_{2} are subsets of B then show that $f^{-1}\left(Y_{1} \cap Y_{2}\right)=f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$.
Question 3. Let $S=\mathcal{F}(\{1,2,3\}, \mathbb{N})$ be the set of all functions from $\{1,2,3\}$ to \mathbb{N}. For $f, g \in S$, we write $f \preccurlyeq g$ if $f(x) \leq g(x)$ for every $x \in\{1,2,3\}$.

- Show that (S, \preccurlyeq) is a partially ordered set.
- Is \preccurlyeq a total order on S ?
- Does S contain a maximal element?
- Does S contain a least element?

Question 4. Prove that $1^{3}+3^{3}+\ldots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$ for all $n \in \mathbb{N}$.
Question 5. (15pts) Define E on \mathbb{R} by $x E y \Leftrightarrow x-y \in \mathbb{Z}$.

- Show that E is an equivalence relation on \mathbb{R}.
- Show that \mathbb{R} / E is uncountable.

Question 6. Let $\mathcal{F}(\mathbb{N},\{0,1\})$ be the set of all functions from \mathbb{N} to $\{0,1\}$ and let $\mathcal{P}(\mathbb{N})$ be the power set of \mathbb{N}. Prove that $\mathcal{F}(\mathbb{N},\{0,1\}) \sim \mathcal{P}(\mathbb{N})$.

