EXERCISE SET III : RECCURENCE

Problem 1. Find the general solution for each of the following relations.
a) $4 a_{n}-5 a_{n-1}=0, n \geq 1$;
b) $3 a_{n+1}-4 a_{n}=0, n \geq 0, a_{1}=5$;
c) $2 a_{n}-3 a_{n-1}=0, n \geq 1, a_{4}=81$;
d) $a_{n}=5 a_{n-1}+6 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=3$;
e) $3 a_{n+1}=2 a_{n}+a_{n-1}, n \geq 1, a_{0}=7, a_{1}=3$;
f) $a_{n}-6 a_{n-1}+9 a_{n-2}=0, n \geq 2, a_{0}=5, a_{1}=12$;
g) $a_{n+2}+a_{n}=0, n \geq 0, a_{0}=0, a_{1}=3$;
h) $a_{n}+2 a_{n-1}+2 a_{n-2}=0, n \geq 2, a_{0}=1, a_{1}=3$.
(The final answer should not involve complex numbers.)
Problem 2. The number of bacteria in a culture is 1000 (approximately) and this number increases 250% every two hours. Use a recurrence relation to determine the number of bacteria after one day.

Problem 3. Laura invested $\$ 100$ at 6% interest compounded quarterly. How many months must she wait for her money to double?

Problem 4. Motorcycles and compact cars can be parked in a row of n spaces, so that each motorcycle requires one space and each compact car needs two. Suppose that all cycles are identical in appearance, as are the cars. Find and solve a recurrence relation for the number of ways to park so that all the n spaces are filled up.

Problem 5. For $n \geq 0$, let a_{n} count the number of ways a sequence of 1 's and 2 's will sum up to n. (For example, $a_{3}=3$, because 3 can be presented in three ways: $1+1+1,1+2$, and $2+1$.) Find and solve a recurrence relation for a_{n}.

Problem 6. For $n \geq 1$, let a_{n} be the number of ways to present n as an ordered sum of positive integers, so that each summand is at least two. (For example, $a_{5}=3$, because 5 can be presented in three ways: $5,3+2$, and $2+3$.) Find and solve a recurrence relation for a_{n}.

Problem 7. Start with one pair of rabbits and suppose that each pair produces one new pair in each of the next two generations and then dies. Find the number f_{n} of pairs belonging to the n-th generation.

Problem 8. The Lucas numbers L_{n} are defined by $L_{1}=1, L_{2}=3, L_{n}=L_{n-1}+$ L_{n-2}. Obtain a formula for L_{n}.

Problem 9. Solve the recurrence relation $a_{n+2}=a_{n} a_{n+1}$.

Problem 10. Solve the recurrence relation $a_{n+2}^{2}-5 a_{n+1}^{2}+4 a_{n}^{2}=0$, where $n \geq 0$, $a_{0}=4, a_{1}=13$.

Problem 11. Determine the constants b and c if $a_{n}=c_{1}+c_{2}\left(7^{n}\right), n \geq 0$, is the general solution of the relation $a_{n+2}+b a_{n+1}+c a_{n}=0$.

Problem 12. Solve each of the following recurrence relations.
a) $a_{n+1}-2 a_{n}=5, a_{0}=1$.
b) $a_{n+1}-2 a_{n}=2^{n}$, $a_{0}=1$.
c) $a_{n+1}-a_{n}=2 n+3, a_{0}=1$.
d) $a_{n+1}-a_{n}=3 n^{2}-n, a_{0}=3$.
e) $a_{n}=4 a_{n-1}-3 a_{n-2}+2^{n}$, $a_{1}=1$, $a_{2}=11$.
f) $a_{n+2}+3 a_{n+1}+2 a_{n}=3^{n}$, $a_{0}=0, a_{1}=1$.
g) $a_{n+2}+4 a_{n+1}+4 a_{n}=7, a_{0}=1, a_{1}=2$.
h) $a_{n+2}-6 a_{n+1}+9 a_{n}=3\left(2^{n}\right)+7\left(3^{n}\right)$, $a_{0}=1, a_{1}=4$.
i) $a_{n+3}-3 a_{n+2}+3 a_{n+1}-a_{n}=3+5 n$, $a_{0}=1$, $a_{1}=4$.
j) $a_{n+2}^{2}-5 a_{n+1}^{2}+6 a_{n}^{2}=7 n, a_{0}=a_{1}=1$.

