EXERCISE SET III : RECCURENCE

Problem 1. Find the general solution for each of the following relations.

a) $4a_n - 5a_{n-1} = 0, n \ge 1;$ b) $3a_{n+1} - 4a_n = 0, n \ge 0, a_1 = 5;$ c) $2a_n - 3a_{n-1} = 0, n \ge 1, a_4 = 81;$ d) $a_n = 5a_{n-1} + 6a_{n-2}, n \ge 2, a_0 = 1, a_1 = 3;$ e) $3a_{n+1} = 2a_n + a_{n-1}, n \ge 1, a_0 = 7, a_1 = 3;$ f) $a_n - 6a_{n-1} + 9a_{n-2} = 0, n \ge 2, a_0 = 5, a_1 = 12;$ g) $a_{n+2} + a_n = 0, n \ge 0, a_0 = 0, a_1 = 3;$ h) $a_n + 2a_{n-1} + 2a_{n-2} = 0, n \ge 2, a_0 = 1, a_1 = 3.$ (The final answer should not involve complex numbers.)

Problem 2. The number of bacteria in a culture is 1000 (approximately) and this number increases 250% every two hours. Use a recurrence relation to determine the number of bacteria after one day.

Problem 3. Laura invested \$100 at 6% interest compounded quarterly. How many months must she wait for her money to double ?

Problem 4. Motorcycles and compact cars can be parked in a row of n spaces, so that each motorcycle requires one space and each compact car needs two. Suppose that all cycles are identical in appearance, as are the cars. Find and solve a recurrence relation for the number of ways to park so that all the n spaces are filled up.

Problem 5. For $n \ge 0$, let a_n count the number of ways a sequence of 1's and 2's will sum up to n. (For example, $a_3 = 3$, because 3 can be presented in three ways: 1 + 1 + 1, 1 + 2, and 2 + 1.) Find and solve a recurrence relation for a_n .

Problem 6. For $n \ge 1$, let a_n be the number of ways to present n as an ordered sum of positive integers, so that each summand is at least two. (For example, $a_5 = 3$, because 5 can be presented in three ways: 5, 3 + 2, and 2 + 3.) Find and solve a recurrence relation for a_n .

Problem 7. Start with one pair of rabbits and suppose that each pair produces one new pair in each of the next two generations and then dies. Find the number f_n of pairs belonging to the n-th generation.

Problem 8. The Lucas numbers L_n are defined by $L_1 = 1$, $L_2 = 3$, $L_n = L_{n-1} + L_{n-2}$. Obtain a formula for L_n .

Problem 9. Solve the recurrence relation $a_{n+2} = a_n a_{n+1}$.

Problem 10. Solve the recurrence relation $a_{n+2}^2 - 5a_{n+1}^2 + 4a_n^2 = 0$, where $n \ge 0$, $a_0 = 4$, $a_1 = 13$.

Problem 11. Determine the constants b and c if $a_n = c_1 + c_2(7^n)$, $n \ge 0$, is the general solution of the relation $a_{n+2} + ba_{n+1} + ca_n = 0$.

Problem 12. Solve each of the following recurrence relations.

a) $a_{n+1} - 2a_n = 5$, $a_0 = 1$. b) $a_{n+1} - 2a_n = 2^n$, $a_0 = 1$. c) $a_{n+1} - a_n = 2n+3$, $a_0 = 1$. d) $a_{n+1} - a_n = 3n^2 - n$, $a_0 = 3$. e) $a_n = 4a_{n-1} - 3a_{n-2} + 2^n$, $a_1 = 1$, $a_2 = 11$. f) $a_{n+2} + 3a_{n+1} + 2a_n = 3^n$, $a_0 = 0$, $a_1 = 1$. g) $a_{n+2} + 4a_{n+1} + 4a_n = 7$, $a_0 = 1$, $a_1 = 2$. h) $a_{n+2} - 6a_{n+1} + 9a_n = 3(2^n) + 7(3^n)$, $a_0 = 1$, $a_1 = 4$. i) $a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 3 + 5n$, $a_0 = 1$, $a_1 = 4$. j) $a_{n+2}^2 - 5a_{n+1}^2 + 6a_n^2 = 7n$, $a_0 = a_1 = 1$.

2