EXERCISE SET IV : GRAPHS

Problem 1. Graph Γ is a tree whose vertices are either tree-valent or leaves. What can be the number of leaves if the number of 3-valent vertices is 100.

Problem 2. (a) Find the number of edges in a graph Γ with 20 vertices, if 10 of these vertices have valency 3, 5 vertices have valency 5 and the rest have valency 7. (b) Assuming that graph Γ is planar, find the number of its regions and show that some regions should have degree 3 or less.

Problem 3. The regions of a planar graphs all have degree 4. Find the number of its edges and regions if the number of vertices is 100.

Problem 4. Prove that any tree is a bipartite graph.

Problem 5. Prove that in a bipartite planar graph the number of vertices is greater than the number of regions.

Problem 6. (a) Show that the regions of a planar graph Γ are two-colorable if the graph contains an Euler cycle. (b) Is it possible that Γ is two-colorable if it contains an Euler path which is not a cycle ?

Problem 7. Find the number of all spanning trees in (a) K_4 ; (b) $K_{2,3}$. Determine which of these trees are isomorphic.

Problem 8. Find the number of non-isomorphic types of (a) graphs with 3 vertices; (b) connected graphs with 4 vertices; (c) trees with 5 and 6 vertices.

Problem 9. Find (a) the chromatic numbers for all the graphs in the previous problem; (b) the edge-chromatic numbers for all these graphs.

Problem 10. Graph Γ has v vertices and e edges, where v + e < 15. Deduce that Γ is planar.

Problem 11. Describe a three-valent graph with 2n vertices which contains a Hamiltonian cycle.

Problem 12. Prove that graph $K_{n,m}$ is not Hamiltonian, unless $|n-m| \leq 1$.

Problem 13. Consider a three-valent bipartite graph Γ , whose vertices are colored in white and black (according to the partition). Prove that it has equal number of black and white vertices.