# M E T U <br> Department of Mathematics 



## READ THE PROBLEMS CAREFULLY AND GIVE DETAILED WORK

1. ( 15 pts ) a) Find the number of monomials (monomial is a summand of the form $c x^{i} y^{j} z^{k}$, where $c$ is a constant) in the expansion of $(x+y+z+1)^{100}$.

Solution: The number of monomials is equal to the number of integer triples $(i, j, k), i, j, k \geq 0, i+j+k \leq$ 100. It is equal to the number of non-negative integer solutions of the equation $i+j+k+t=100$, so, it is $\binom{103}{3}=\frac{100!}{100!3!}$.
b) Find the coefficient of $x^{8}$ in $\left(x^{2}+x+2\right)^{7}$.

Solution: Product $\left(x^{2}\right)^{i} x^{j} 2^{k}, i+j+k=7$, appears with the coefficient $\frac{7!}{i!j!k!}$. Here, $x^{8}$ occurs if $2 i+j=8$, that is for the following triples $(i, j, k):(4,0,3),(3,2,2),(2,4,1),(1,6,0)$. This gives

$$
\frac{7!}{4!3!} 2^{3}+\frac{7!}{3!2!2!} 2^{2}+\frac{7!}{2!4!} 2+\frac{7!}{6!}=35 \times 8+210 \times 4+105 \times 2+7=280+840+210+7=1337
$$

c) How many telephone numbers can be formed with two digits 1 , two digits 2 , and three digits 3 , so that two (but not all three) digits 3 stand together ?

Solution: The first solution: $\frac{4!}{2!2!}$ permutations of $1,1,2,2$, then 5 possible places between 4 digits to insert 33 (together), and 4 places to insert 3 (separate). The result is $\frac{4!}{2!2!} \times 5 \times 4=120$.

The second solution: from $\frac{6!}{2!2!}$ permutations of $1,1,2,2,33,3$ we should subtract the ones with three digits 3 together, which were counted in two ways: as 33 and then 3 , or 3 and then 33 . The result is

$$
\frac{6!}{2!2!}-2 \frac{5!}{2!2!}=180-60=120
$$

The third solution: there are $\frac{7!}{2!2!3!}$ permutations of $1,1,2,2,3,3,3$, and among them $\frac{4!}{2!2!}\binom{5}{3}$ have no pair of digits 3 standing together, and $\frac{5!}{2!2!}$ have all three digits 3 standing together. The result is

$$
\frac{7!}{2!2!3!}-\frac{4!}{2!2!}\binom{5}{3}-\frac{5!}{2!2!}=210-60-30=120
$$

2. (15 pts) Suppose that a department contains 10 women and 6 men.
a) Three couples are married. In how many ways it could happen?

Solution: Note that there are $C(6,3)$ ways to choose 3 men to be married, then there are $P(10,3)$ ways to choose three women to marry these three men. Thus the answer is:
$C(6,3) P(10,3)$
b) How many ways are there to form a committee with 5 members if it must have more women than men ?

Solution: Note that there are three distinct possibilities for the committee: there could be no men, or exactly one men or exactly two men. Thus the answer is:
$C(10,5) C(6,0)+C(10,4) C(6,1)+C(10,3) C(6,2)$
c) How many ways are there to arrange all 16 department members in a row, so that no two men stand next to each other ?

Solution: Note that for any ordering of the 10 women, there are 11 possible places to insert men; we choose 6 . Thus there are $10!P(11,6)$ ways to arrange.
3. ( $\mathbf{1 5} \mathrm{pts}$ ) a) Four fair coins are tossed. Find the probability that at least three of them land heads up?

Solution: There are five cases: $\{4 \mathrm{H}$ and $0 \mathrm{~T}: 1 / 16\},\{3 \mathrm{H}$ and $1 \mathrm{~T}: 4 / 16\},\{2 \mathrm{H}$ and $2 \mathrm{~T}: 6 / 16\},\{1 \mathrm{H}$ and $3 \mathrm{~T}: 4 / 16\},\{0 \mathrm{H}$ and $4 \mathrm{~T}: 1 / 16\}$

Thus the probability that at least three of them land heads up is $4 / 16+1 / 16=5 / 16$
b) Suppose we flip a coin four times. What is the probability that exactly three heads occur given that at least one head occurred?

Solution: If we flip a coin four times we get $|S|=16$. If we know at least one head occurs, define the new sample space as $E$, so we have $E=S-\{T T T T\}$, by which we get $|E|=15$.

Let $A$ : Have exactly 3 heads.

So $|A|=\frac{4!}{3!1!}=4$.

Thus the answer is $\frac{|A|}{|E|}=4 / 15$.
c) What is more probable: rolling a total of 8 when two dice are rolled or rolling a total of 8 when three dice are rolled?

Solution: I. Rolling two dice, to obtain 8 we have the following choices : $2-6,3-5,4-4,5-3,6-2$. Since the sample space has $6^{2}=36$ elements, the required probability is $5 / 36$.
(or once can do it by the following : $x_{1}+x_{2}=8$ for $1 \leq x_{i} \leq 6, i=1, \cdots, 6$ and let $x_{i}=y_{i}+1$. Then we have $y_{1}+y_{2}=6$ where $0 \leq y_{i} \leq 5$. We have $\binom{6+2-1}{6}=\binom{7}{6}=7$ for $0 \leq y_{i}$. We have two more cases where $y_{j}=6, j=1,2$; indeed $6+2$ and $2+6$. So the number of solutions is $7-2=5$. Thus the required probability is $5 / 36$.)
II. Rolling three dices, to obtain 8 we have : $x_{1}+x_{2}+x_{3}=8$ for $1 \leq x_{i} \leq 6, i=1, \cdots, 6$. This implies $y_{1}+y_{2}+y_{3}=5$ where $x_{i}=y_{i}+1$ for each $i=1, \cdots, 6$. So we have $\binom{5+3-1}{5}=\binom{7}{5}=21$ solutions. Thus the required probability is $21 / 216$.
(or one can check each cases : $(1,1,6) ;(1,2,5) ; \ldots ;(1,6,1) ;(2,1,5) ;(2,2,4) ; \ldots ;(2,5,1) ;(3,1,4) ;(3,2,3) ;(3,3,2) ;(3,4,1)$; $(4,1,3) ;(4,2,4) ;(4,3,1) ;(5,1,2) ;(5,2,1) ;(6,1,1)$ We have $6+5+4+3+2+1=21$ cases. Thus the required probability is $21 / 216$ )

Obviously $5 / 36>21 / 216$. Hence the first case is more probable.
4. (15 pts) Two distinct integers $1 \leq a, b \leq 100$ are chosen at random.
a) What is the probability that one of them is not greater than 10 ? Estimate whether the probability is less or more than $20 \%$ ?

Solution: $p(E)=\frac{|E|}{|S|}, \quad|S|=\binom{100}{2}, \quad$ event $E: a \leq 10$, or $b \leq 10$.
$\bar{E}: 10<a, b \leq 100, \quad|\bar{E}|=\binom{90}{2}, \quad|E|=\binom{100}{2}-\binom{90}{2}$.
$p(E)=1-\frac{90 \times 89}{100 \times 99}, \quad$ where $\frac{90 \times 89}{100 \times 99}=\frac{89}{110}>\frac{88}{110}=\frac{8}{10}$.

Thus, $p(E)<1-\frac{8}{10}=\frac{2}{10}=20 \%$.
b) What is the probability that one of these two numbers is divisible by 3 , or 5 ?

Solution: Among 1,2.., 100 there are
$\left\lfloor\frac{100}{3}\right\rfloor=33$ numbers divisible by 3 ,
$\left\lfloor\frac{100}{5}\right\rfloor=20$ divisible by 5 ,
$\left\lfloor\frac{100}{15}\right\rfloor=6$ divisible by both.
Thus, $33+20-6=47$ are divisible by 3 or 5 , and 53 are not divisible neither by 3 , nor by 5 .
Event $E$ : $a$ is divisible by 3 or 5 , or $b$ is divisible by 3 or 5
$\bar{E}$ : both $a$ and $b$ are not divisible neither by 3 , nor by 5 ,
$|\bar{E}|=\binom{53}{2}, \quad|E|=\binom{100}{2}-\binom{53}{2}$, and thus, $\quad p(E)=\frac{|E|}{|S|}=1-\frac{53 \times 52}{100 \times 99}$.

