Pigeonhole Principle

Lecture Notes in Math 212 Discrete Mathematics

Sergey Finashin
METU, Depart. of Math

March, 2020

Pigeonhole Principle, or Dirichlet Box Principle

General Meme

If 10 pigeons are located in 9 pigeonholes, then there is a pigeonhole with more than one pigeon.

Meme for reverse Pigeonhole Principle

If 9 pigeons are located in 10 pigeonholes, then at least one pigeonhole will be empty.

In language of functions

- If a set A has more elements than a set B, then a map $F: A \rightarrow B$ cannot be injective (one-to-one). That is, some elements a_{1}, a_{2} from A will have the same image.
- If a set A has fewer elements than a set B, then a map $F: A \rightarrow B$ cannot be surjective (onto). That is, some element b from B has empty preimage.

Simplest Application

Examples

- In a class of 13 students, at least two must be born in the same month. Here, the 13 students are "pigeons" and the 12 months are "pigeonholes".
- If 102 students took an exam with maximal score 100 points, then at least two students will have the same score.
The students are "pigeons", the numbers of points are "pigeonholes".
- In a letter with 30 words at least two words begin with the same letter. The words are "pigeons" and the 26 letters are "pigeonholes".
- Among 100 integers a_{1}, \ldots, a_{100} one can find two $a_{i}, a_{j}, i \neq j$, whose difference is divisible by 97 .
Integers a_{1}, \ldots, a_{100} are "pigeons", residues mod 97 are "pigeonholes".
- A drawer contains 10 pairs of socks of different colors and you pick some randomly. What minimum number guarantees a pair of one color? The 10 colors are "pigeonholes", so we need to pick 11 to guarantee.

Some little tricks

Example

For any choice of six digits in the set $S=\{1,2 \ldots, 9\}$ one can find two chosen digits giving in sum 10.

Solution: Pigeons here are digits and pigeonholes are 5 subsets $\{1,9\},\{2,8\},\{3,7\},\{4,6\},\{5\}$. Among six chosen digits two will be in the same subset, and thus, give in sum 10.

Example

If there are $n>1$ people who can shake hands with one another, then there is always two persons who will shake hands with the same number of people.

Solution: Each person shakes hands from 0 to $n-1$ people, totally n possibilities. But 0 means that someone shakes hands to nobody, while $n-1$ means shaking hands to everybody. So, both 0 and $n-1$ cannot happen at the same time and this leaves n people to $n_{-}-1$ possibilitiés.

Divisibility of numbers $111 \ldots 1$ (written with only 1 s)

Example

Show that for every integer n, some multiple of n has only $0 s$ and $1 s$ in its decimal presentation.

Solution: Consider the $n+1$ integers $1,11,111, \ldots, \underbrace{1 \ldots 1}_{n+1}$. There are n possible remainders after division by n. So, by the pigeonhole principle, two of these numbers have the same remainder. Then n divides the difference of the larger and the smaller one $\underbrace{1 \ldots 1}_{r}-\underbrace{1 \ldots 1}_{k}=\underbrace{1 \ldots 1}_{r-k} \underbrace{0 \ldots 0}_{k}$

Corollary

If n is odd and not divisible by 5 , then it has a multiple looking as $1 \ldots 1$.
Since n is relatively prime to 10 , we can drop zeros in the above example.

A problem with the same idea of solution

Example

Prove that for any odd $n \in \mathbb{N}$ some of its multiple looks like $2^{m}-1$ for some $m \in \mathbb{N}$.

Solution: Consider $n+1$ integers $2^{1}-1,2^{2}-1 \ldots, 2^{n}-1,2^{n+1}-1$. By pigeonhole principle two of them have the same remainder upon division by $n: 2^{r}-1=a n+r, 2^{k}-1=b n+r$, where $r>k$. Then

$$
\left(2^{r}-1\right)-\left(2^{k}-1\right)=2^{r}-2^{k}=2^{k}\left(2^{r-k}-1\right)=(a-b) n
$$

Since n is odd, we have $\operatorname{gcd}\left(n, 2^{k}\right)=1$ and we conclude that $2^{m}-1$ for $m=r-k$ is divisible by n.
In the last two examples we used the following fact.

Theorem

If $n \mid a b$ and n is relatively prime to a (notation: $\operatorname{gcd}(n, a)=1$), then $n \mid b$.

Divisibility of consecutive sums

Example

In every sequence of $n \in \mathbb{N}$ integers a_{1}, \ldots, a_{n} one can find several consecutive ones whose sum $a_{i}+a_{i+1}+\cdots+a_{j}$ is divisible by n.

Solution: Consider n integers formed by consecutive summation: a_{1}, $a_{1}+a_{2}, \ldots a_{1}+\ldots a_{n}$. If any of them is divisible by n we are done. Otherwise, there are $n-1$ remainders $1,2, \ldots, n-1$ that may happen upon division by n. By pigeonhole principle, for some pair of integers the remainders are equal, so their difference is a multiple of n. Such difference is also a consecutive sum $\left(a_{1}+\cdots+a_{j}\right)-\left(a_{1}+\cdots+a_{i}\right)=a_{i+1}+\cdots+a_{j}$ if $i<j$.

Pigeonhole Principle in Geometry

Example

One has chosen 5 points inside an equilateral triangle with side 1. Prove that between some pair of chosen points the distance is $\leq \frac{1}{2}$.

Solution Connect pairwise the midpoints of the sides of the triangle. This subdivide the triangle into 4 equilateral triangles with the side length $\frac{1}{2}$. Among the 5 given points (pigeons) two must appear in one of these triangles (pigeonholes). Finally, observe that the maximal distance between two points in a small triangle is $\frac{1}{2}$.

One more tricky example of pigeonholes

Example

Show that among any 101 positive integers not exceeding 200 there must be an integer that divides one of the other integers.

Solution: Set $S=\{1, \ldots, 200\}$ is partitioned into 100 subsets numerated by odd numbers $1,3, \ldots, 199$. $A_{1}=\{1,2,4,8, \ldots, 128\}$, $A_{3}=\{3,6,12, \ldots, 192\}, A_{5}=\{5,10,20,40,80,160\}, \ldots, A_{199}=\{199\}$. Each subset A_{n} start with an odd number n and contains its multiples $2 n$, $4 n, \ldots$ obtained by multiplication by powers of 2 , so that the product does not exceed 200. If we pick 101 integers from S, then two of them appear in one subset. And it is left to notice that among two numbers in one subset the lesser one divides the greater ones.

Generalized Pigeonhole Principle

Assume that m objects are distributed to n boxes. Then

Estimate from below
 Estimate from above

if $m>n k$, then some box contains
if $m<n k$, then some box contains
$\geq k+1$ objects
$\leq k-1$ objects

Proof by contrapositive (by contradiction)

If each box contained $\leq k$ objects, there would be $\leq n k$ objects totally.

If each box contained $\geq k$ objects, there would be $\leq n k$ objects totally.

Examples

- Among 100 people one can always find 9 born in the same month.
- How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards are of the same suit ?
The "boxes" are 4 suits, so the minimum is $n=9$ cards, because $\frac{n}{4}>2$ is needed to get 3 cards of the same color.

Problems solved in consecutive days

Example

During 30 days a student solves at least one problem every day from a list of 45 problems. Show that there must be a period of several consecutive days during which he solves exactly 14 problems.

Solution Let a_{i} be the number of problems solved during first i days. This gives an increasing sequence $0<a_{1}<a_{1}<\cdots<a_{30} \leq 45$. Then we have $14<a_{1}+14<a_{2}+14<\cdots<a_{30}+14 \leq 59$. Altogether we have $30+30=60$ positive integers less than 60. By Pigeonhole principle there must be two equal among them. But the integers $a_{i}, i=1, \ldots, 30$ are all distinct, and $a_{i}+14, i=1, \ldots, 30$ are distinct too. So, we must have $a_{j}=a_{i}+14$ for some i and j. Then $a_{j}-a_{i}=14$ problems were solved from day $i+1$ to day j.

