Discrete (Finite) probability, Part 1
 Lecture Notes in Math 212 Discrete Mathematics

Sergey Finashin
METU, Depart. of Math

April, 2020

Language of Probability

An experiment

a procedure resulting in several possible outcome: like rolling dice, or tossing (flipping) a coin, or serving cards in a card game.

Sample Space for Rolling a Die:

6 outcomes

The Sample Space

is the set of outcomes after some experiment: like $\{1,2,3,4,5,6\}$ after rolling a die, or $\{$ heads, tails $\}$ after tossing a coin, or $\{H H, H T, T H, T T\}$ after tossing a coin 2 times (here, for example, $H T$ means that you get heads after the first tossing and tails after the second one).

Events and their Probability (Chances)

Event is any subset of the sample space.

If S is the sample set and $E \subset S$ an event, then the probability of E is $p(E)=\frac{|E|}{|S|}$.

For instance, the probability of each outcome of an experiment (one-element subset of S) is $\frac{1}{|S|}$.

Outcome of die roll	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Examples

- Probability of "heads" after flipping a coin is $\frac{1}{2}$.
-Probability of " 6 " after rolling a die is $\frac{1}{6}$.
- Probability of even outcome $(2,4$, or 6$)$ after rolling a die is $\frac{3}{6}=\frac{1}{2}$.

Random Choice

Random ball in an urn

An urn contains four blue and five red balls. What is the probability that a ball chosen at random is blue.

Solution: An experiment here is choosing a ball. An outcome is one of the balls which is chosen. The sample space S contain $4+5$ outcomes (one for each ball that can be chosen). The event E contains 4 outcomes (since there are 4 blue balls). Hence, the probability is $p(E)=\frac{|E|}{|S|}=\frac{4}{9}$.

Random number

What is a probability that an integer selected at random from the set $\{1,2, \ldots, 100\}$ is divisible by either 2 or 5 ?

Solution: Here $S=\{1, \ldots, 100\}$ and $E=\{2,4,5,6,8,10, \ldots, 100\}$ includes $\left[\frac{100}{2}\right]+\left[\frac{100}{5}\right]-\left[\frac{100}{10}\right]=50+20-10=60$ numbers (by inclusion and exclusion formula). So, $p(E)=\frac{60}{100}=\frac{3}{5}$.

Rolling dice

The sum is 7

What is the probability that when two dice are rolled, the sum of the numbers obtained is 7 ?

Solution: The sample space S contains $6 \times 6=36$ outcomes, which are pairs (i, j) of numbers $i, j \in\{1,2,3,4,5,6\}$ on the dice. The sum is 7 in six cases, $(1,6),(2,5),(3,4),(4,3),(5,2)$, and $(6,1)$. These 6 pairs are elements of the event (set) $E \subset S$, and $p(E)=\frac{6}{36}=\frac{1}{6}$.

At least one 6 after a die is rolled 3 times

Find the probability to get at least one 6 after a die is rolled 3 times.
Solution: Now, set S contains $6^{3}=216$ outcomes: triples (i, j, k) of $i, j, k \in\{1,2,3,4,5,6\}$. With $i=6$ there are $6^{2}=36$ triples, and similar with $j=6$, or with $k=6$. The inclusion-exclusion formula gives $3 \cdot 36-\binom{3}{2} 6+1=108-18+1=91$ triples with at least one 6 . So, the answer is $\frac{91}{216}$.

Sampling of balls in an urn

Sampling without or with replacement

An urn contains 10 balls numerated $0,1,2, \ldots, 9$ and 3 of them are taken randomly one-by one.
(a) What is the probability that the chosen balls are 3, 5, 8 and they are chosen in this order ?
(b) What is the probability to take this collection of balls in any order ?
(c) How the answers to questions (a) and (b) will change if a ball is returned to the urn before the next one is selected ?

Solution: (a) The number of consecutive selections of 3 balls is $10 \cdot 9 \cdot 8=720$ and $3,5,8$ is just one of these selections (one element of the Sample space). So, the probability is $\frac{1}{720}$.
(b) The Event now contains 6 elements: $E=\{(358),(538), \ldots,(853)\}$ (six permutations of $3,5,8$) and so, $p(E)=\frac{6}{720}=\frac{1}{120}$.
(c) The sample space S now contains $10^{3}=1000$ elements (since repetitions in triples are allowed). The answers to (a) and (b) will be then $\frac{1}{1000}=0.001$ and $\frac{6}{1000}=0.006$.

Poker combinations of cards

Four cards of one kind

Find the probability that a hand of five cards contains four of one kind.
Solution: The sample space contains $\binom{52}{5}$ elements (total number of 5 -card selections). Four of one kind appears in $\binom{13}{1} \cdot\binom{48}{1}$ of the selections. Here 13 is the number of kinds and 48 is the number of choices for the fifth card (after 4 of one kind are chosen). So, the answer is $\frac{13 \cdot 48}{\binom{52}{5}}$.

A full house

Find the probability of a full house combination, that is three of one kind and two of another. How much it is bigger than for four of one kind?

Solution: Three of one kind can be selected in $\binom{13}{1} \cdot\binom{4}{3}=52$ ways, and two of another kind in $\binom{12}{1} \cdot\binom{4}{2}=72$ ways. Totally, $52 \cdot 72$ way to get a full house, which gives probability $\frac{52 \cdot 72}{\binom{52}{5}}$. It is $\frac{52 \cdot 72}{13 \cdot 48}=6$ times bigger than in the previous example.

Further terminology and properties

For any subset $E \subset S$ we have $|E| \leq|S|$, so we can conclude that

$$
0 \leq p(E)=\frac{|E|}{|S|} \leq 1, \text { and }\left\{\begin{array}{l}
p(E)=0 \text { only if } E=\varnothing \\
p(E)=1 \text { only if } E=S
\end{array}\right.
$$

The event $\bar{E}=S-E$ is called the complementary event to E. Its probability is $p(\bar{E})=\frac{|S-E|}{|S|}=\frac{|S|-|E|}{|S|}=1-p(E)$.

Events A and B are called disjoint if $A \cap B=\varnothing$. In this case $p(A \cup B)=p(A)+p(B)$, because $|A \cup B|=|A|+|B|$ if $A \cap B=\varnothing$.

Events A and B are overlapping if $A \cap B \neq \varnothing$. In this case
$p(A \cup B)=p(A)+p(B)-p(A \cap B)$. This is because in the case of $A \cap B \neq \varnothing$, we have $|A \cup B|=|A|+|B|-|A \cap B|$.

Estimates of probabilities using complementary events

Four people choose at random a digit $0,1, \ldots, 9$. What is more likely

that all 4 chosen digits are different, or that at least two of them coincide?
Solution: Four digits can be chosen in $10^{4}=10000$ ways. Among these choices, $10 \cdot 9 \cdot 8 \cdot 7=5040$ selections give distinct digits. Hence, probability to choose four distinct numbers $p=0.504$ is slightly more than probability $1-p=0.496$ to obtain coincidence of at least two digits.

Two distinct integers $1 \leq a, b \leq 100$ are chosen at random

What is the probability that one of them is not greater than 10 ? Estimate whether the probability is less or more than 20% ?

Solution: A pair of distinct numbers can be chosen in $100 \cdot 99=9900$ ways. Both numbers are greater than 10 in $90 \cdot 89$ cases. Hence, the probability that both numbers are greater than 10 is $p=\frac{90 \cdot 89}{9900}=\frac{89}{110}$. The probability of the complementary event that one of the numbers is ≤ 10 is $1-p=\frac{21}{110}$. It is less than 20% because $\frac{21}{110}=\frac{210}{1100}<\frac{220}{1100}=\frac{20}{100}$. (By definition, $20 \%=\frac{20}{100}$.)

