Discrete (Finite) probability, Part 1 Lecture Notes in Math 212 Discrete Mathematics

Sergey Finashin

METU, Depart. of Math

April, 2020

April, 2020

Sergey Finashin (METU, Depart. of Math) Discrete (Finite) probability, Part 1

Language of Probability

An experiment

a procedure resulting in several possible outcome: like *rolling dice*, or *tossing (flipping) a coin*, or *serving cards* in a card game.

The Sample Space

is the set of outcomes after some experiment: like $\{1, 2, 3, 4, 5, 6\}$ after rolling a die, or {heads, tails} after tossing a coin, or {HH, HT, TH, TT} after tossing a coin 2 times (here, for example, HT means that you get heads after the first tossing and tails after the second one).

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Events and their Probability (Chances)

Event is any subset of the sample space.

If S is the sample set and $E \subset S$ an event, then the probability of E is $p(E) = \frac{|E|}{|S|}$.

For instance, the probability of each outcome of an experiment (one-element subset of S) is $\frac{1}{|S|}$.

0	$P \text{ (heads)}$ $= \frac{1}{2} = 0.5$	Outcome of die roll	1	2	3	4	5	6
		Probability	1/6	1/6	1/6	1/6	1/6	1/6

Examples

•Probability of "heads" after flipping a coin is $\frac{1}{2}$.

•Probability of "6" after rolling a die is $\frac{1}{6}$.

• Probability of even outcome (2, 4, or 6) after rolling a die is $\frac{3}{6} = \frac{1}{2}$.

Random ball in an urn

An urn contains four blue and five red balls. What is the probability that a ball chosen at random is blue.

Solution: An experiment here is choosing a ball. An outcome is one of the balls which is chosen. The sample space *S* contain 4 + 5 outcomes (one for each ball that can be chosen). The event *E* contains 4 outcomes (since there are 4 blue balls). Hence, the probability is $p(E) = \frac{|E|}{|S|} = \frac{4}{9}$.

Random number

What is a probability that an integer selected at random from the set $\{1, 2, \ldots, 100\}$ is divisible by either 2 or 5 ?

Solution: Here $S = \{1, ..., 100\}$ and $E = \{2, 4, 5, 6, 8, 10, ..., 100\}$ includes $\left[\frac{100}{2}\right] + \left[\frac{100}{5}\right] - \left[\frac{100}{10}\right] = 50 + 20 - 10 = 60$ numbers (by inclusion and exclusion formula). So, $p(E) = \frac{60}{100} = \frac{3}{5}$.

Rolling dice

The sum is 7

What is the probability that when two dice are rolled, the sum of the numbers obtained is 7 ?

Solution: The sample space *S* contains $6 \times 6 = 36$ outcomes, which are pairs (i, j) of numbers $i, j \in \{1, 2, 3, 4, 5, 6\}$ on the dice. The sum is 7 in six cases, (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1). These 6 pairs are elements of the event (set) $E \subset S$, and $p(E) = \frac{6}{36} = \frac{1}{6}$.

At least one 6 after a die is rolled 3 times

Find the probability to get at least one 6 after a die is rolled 3 times.

Solution: Now, set *S* contains $6^3 = 216$ outcomes: triples (i, j, k) of $i, j, k \in \{1, 2, 3, 4, 5, 6\}$. With i = 6 there are $6^2 = 36$ triples, and similar with j = 6, or with k = 6. The inclusion-exclusion formula gives $3 \cdot 36 - \binom{3}{2}6 + 1 = 108 - 18 + 1 = 91$ triples with at least one 6. So, the answer is $\frac{91}{216}$.

Sampling without or with replacement

An urn contains 10 balls numerated $0, 1, 2, \ldots, 9$ and 3 of them are taken randomly one-by one.

(a) What is the probability that the chosen balls are 3, 5, 8 and they are chosen in this order ?

(b) What is the probability to take this collection of balls in any order ?(c) How the answers to questions (a) and (b) will change if a ball is returned to the urn before the next one is selected ?

Solution: (a) The number of consecutive selections of 3 balls is $10 \cdot 9 \cdot 8 = 720$ and 3, 5, 8 is just one of these selections (one element of the Sample space). So, the probability is $\frac{1}{720}$. (b) The Event now contains 6 elements: $E = \{(358), (538), \dots, (853)\}$ (six permutations of 3, 5, 8) and so, $p(E) = \frac{6}{720} = \frac{1}{120}$. (c) The sample space S now contains $10^3 = 1000$ elements (since repetitions in triples are allowed). The answers to (a) and (b) will be then $\frac{1}{1000} = 0.001$ and $\frac{6}{1000} = 0.006$.

Four cards of one kind

Find the probability that a hand of five cards contains four of one kind.

Solution: The sample space contains $\binom{52}{5}$ elements (total number of 5-card selections). Four of one kind appears in $\binom{13}{1} \cdot \binom{48}{1}$ of the selections. Here 13 is the number of kinds and 48 is the number of choices for the fifth card (after 4 of one kind are chosen). So, the answer is $\frac{13\cdot48}{\binom{52}{5}}$.

A full house

Find the probability of a full house combination, that is three of one kind and two of another. How much it is bigger than for four of one kind ?

Solution: Three of one kind can be selected in $\binom{13}{1} \cdot \binom{4}{3} = 52$ ways, and two of another kind in $\binom{12}{1} \cdot \binom{4}{2} = 72$ ways. Totally, $52 \cdot 72$ way to get a full house, which gives probability $\frac{52 \cdot 72}{\binom{52}{5}}$. It is $\frac{52 \cdot 72}{13 \cdot 48} = 6$ times bigger than in the previous example.

Further terminology and properties

For any subset $E \subset S$ we have $|E| \leq |S|$, so we can conclude that

$$0 \le p(E) = rac{|E|}{|S|} \le 1$$
, and $\begin{cases} p(E) = 0 \text{ only if } E = \varnothing \\ p(E) = 1 \text{ only if } E = S \end{cases}$

The event $\overline{E} = S - E$ is called *the complementary event* to \overline{E} . Its probability is $p(\overline{E}) = \frac{|S-E|}{|S|} = \frac{|S|-|E|}{|S|} = 1 - p(E)$.

Events A and B are called *disjoint* if $A \cap B = \emptyset$. In this case $p(A \cup B) = p(A) + p(B)$, because $|A \cup B| = |A| + |B|$ if $A \cap B = \emptyset$.

Events A and B are overlapping if $A \cap B \neq \emptyset$. In this case $p(A \cup B) = p(A) + p(B) - p(A \cap B)$. This is because in the case of $A \cap B \neq \emptyset$, we have $|A \cup B| = |A| + |B| - |A \cap B|$.

Estimates of probabilities using complementary events

Four people choose at random a digit $0, 1, \ldots, 9$. What is more likely

that all 4 chosen digits are different, or that at least two of them coincide ?

Solution: Four digits can be chosen in $10^4 = 10000$ ways. Among these choices, $10 \cdot 9 \cdot 8 \cdot 7 = 5040$ selections give distinct digits. Hence, probability to choose four distinct numbers p = 0.504 is slightly more than probability 1 - p = 0.496 to obtain coincidence of at least two digits.

Two distinct integers $1 \le a, b \le 100$ are chosen at random

What is the probability that one of them is not greater than 10 ? Estimate whether the probability is less or more than 20% ?

Solution: A pair of distinct numbers can be chosen in $100 \cdot 99 = 9900$ ways. Both numbers are greater than 10 in $90 \cdot 89$ cases. Hence, the probability that both numbers are greater than 10 is $p = \frac{90 \cdot 89}{9900} = \frac{89}{110}$. The probability of the complementary event that one of the numbers is ≤ 10 is $1 - p = \frac{21}{110}$. It is less than 20% because $\frac{21}{110} = \frac{210}{1100} < \frac{220}{1100} = \frac{20}{100}$. (By definition, $20\% = \frac{20}{100}$.)