M E T U
 Department of Mathematics

Show your work! For the correct answers without any explanation you may receive no partial credits !

Question $1(5+5+5=15$ points)
$\overline{\text { Consider a triangle with vertices } A(1,1), B}(3,5), C(-3,2)$.
a) Find the equation of line AB and its intersepts with the coordinate axes. What is the slope of this line ?
b) Find the equation of the line perpendicular to the side AB and passing through its midpoint.
c) Find a point D such that $A B D C$ is a parallelogram (so that D is the opposite vertex to A). To which quadrant does point D belong ?

Question $2(4+6+5=15$ points)
Given equation $r^{2}=\sin 2 \theta$ of a curve in polar coordinates
a) Determine if this curve is symmetric with respect to the polar axis? Is it symmetric with respect to the pole ? (Do it not using the results of calculations and the sketch in part b).
b) Calculate the values of r for several values of θ and use it to sketch the graph of this curve.
c) Find the equation of this curve in the Cartesian coordinates.

Question $3(4+6+5=15$ points)
Consider line ℓ defined by equation $x-y+1=0$
a) Translate the xy-coordinate system horizontally, so that ℓ passes through the origin of the new coordinate system. Find the equation of ℓ in new coordinates \tilde{x} and \tilde{y}.
b) Rotate the xy-coordinate system so that ℓ becomes parallel to the new axis \bar{x}. Find the equation of ℓ in new coordinates \bar{x} and \bar{y} using the coordinate change formulas.
c) Point P has $x y$-coordinates $(2,-4)$. Find its $\tilde{x} \tilde{y}$ and $\bar{x} \bar{y}$ coordinates.
a) Triangle ABC has vertices $\mathrm{A}=(1,0), \mathrm{B}=(-1,2)$, and $\mathrm{C}=(4,1)$. Find $\cos A$ and determine if angle A is greater or less than $\frac{\pi}{2}$? (Use just your calculation, but not a sketch.)
b) Prove that a pair of vectors \vec{u} and \vec{v} are perpendicular if and only if their sum $\vec{u}+\vec{v}$ and difference $\vec{u}-\vec{v}$ have equal length.
c) Consider a triangle ABC and the midpoints $\mathrm{D}, \mathrm{F}, \mathrm{E}$ on its sides AB, AC, and BC respectively. Express vectors $\overrightarrow{A E}$, $\overrightarrow{B F}, \overrightarrow{C D}$ in terms of vectors $\vec{u}=\overrightarrow{A B}, \vec{v}=\overrightarrow{A C}$, and $\vec{w}=\overrightarrow{B C}$. Prove that $\overrightarrow{A E}+\overrightarrow{B F}+\overrightarrow{C D}=\overrightarrow{0}$.

