Department of Mathematics

Explain what you are doing briefly. Otherwise you will get no credits!

1. (10 points) Let P be a point in the plane with a pair of polar coordinates $(2, \pi / 6)$.
(a) Find the Cartesian coordinates (x, y) of P.
(b) Find a polar equation for the line ℓ through $(2, \pi / 6)$ perpendicular to the polar axis.
(c) Find a polar equation for the line m through P and the pole O.
2. (14 points) In a given triangle $\triangle A B C, A(1,8), B(2,1)$ and $C(3,3 / 2)$.
(a) Find an equation of the line ℓ containing the altitude $\overline{A D}$.
(b) Find the point(s) on the line m containing the side $\overline{B C}$ such that $|C E|=2|B C|$.
(c) Find the point D and its distance from B and C.
3. (12 points) Consider the line ℓ with equation $x+2 y+7=0$.
(a) Find a translation that translates the $X Y$-coordinates (x, y) into a suitable $\tilde{X} \tilde{Y}$ coordinates (\tilde{x}, \tilde{y}) such that ℓ passes through the origin \tilde{O} in the new system.
(b) Rotate the XY-coordinate system through an angle of 45° in the clockwise direction to obtain $\bar{X} \bar{Y}$-coordinate system. Write this rotation.
(c) Use (b) to express the equation of ℓ in terms of \bar{x} and \bar{y}.
4. (14 points) Let the points $A(-9,3), B(-2,2)$ and $C(2,5)$ be given.
(a) Determine whether or not the measure of the angle $\angle A B C$ exceeds $\pi / 2$. In other words is $\angle A B C$ an obtuse angle?
(b) Find the point D so that the quadrilateral $A B C D$ is a parallelogram.
