METU DEPARTMENT OF MATHEMATICS

List No:

2014-2015 Fall Semester Math 115 Analytic Geometry Final Examination Monday, January 10th, 2015

Name, Last Name:	
Student No:	
Department:	Signature:

Duration: 115 minutes - 7 Questions on 4 Pages - Total 80 Points

QUESTION 1 (10 points)

Given the straight lines

$$\ell_1: \begin{cases} x = 2t + 3 \\ y = t + 4 \end{cases}$$
 and $\ell_2: \begin{cases} x = 2t + 3 \\ y = 4t + 4 \end{cases}$

Write an equation of the straight line which passes through $\ell_1 \cap \ell_2$ and which bisects the angle between ℓ_1 and ℓ_2 .

Obviously the point P(3,4) is the intersection point of ℓ_1 and ℓ_2 . We can take $\vec{u} = (2,1)$ and $\vec{v} = (1,2)$ as direction vectors of these lines. Since $|\vec{u}| = |\vec{v}|$, the vector $\vec{u} + \vec{v} = (3,3)$ bisects the angle between \vec{u} and \vec{v} . Equation of the required line is $\ell: \begin{cases} x = 3t + 3\\ y = 3t + 4 \end{cases}$

QUESTION 2 (10 points)

Write an equation of the line of intersection of planes x + y + z = 0 and y = z.

Normal vectors of the planes in question are $\vec{N}_1 = (1,1,1)$ and $\vec{N}_2 = (0,1,-1)$. A direction vector of the line of intersection is $\vec{u} = \vec{N}_1 \times \vec{N}_2 = (-2,1,1)$. The point (0,0,0) is a common point of the given planes. Then an equation of the intersection line is (x, y, z) = (-2t, t, t).

QUESTION 3 (7 points)

Write the equations of changing the coordinates of an appropriate transformation which eliminates the xy term of the equation

$$x^2 + 4xy - 2y^2 - 6 = 0.$$

Characteristic equation is $2m^2 + 3m - 2 = 0$, whose roots are $m_1 = -2$ and $m_2 = \frac{1}{2}$. If we let $m = m_1 = \frac{1}{2}$, we get $\theta = \operatorname{atan} \frac{1}{2}$. A rotation of measure θ around the origin eliminates the xy term. To obtain the related equations of the rotation we first compute $\sin \theta = \frac{1}{\sqrt{5}}$ and $\cos \theta = \frac{2}{\sqrt{5}}$. Then

$$x = \frac{1}{\sqrt{5}}(2x' - y')$$
$$y = \frac{1}{\sqrt{5}}(x' + 2y').$$

QUESTION 4 (7 points)

Write the equations of changing the coordinates of an appropriate transformation which eliminates the terms x and y of the equation

$$16x^2 + 25y^2 - 64x + 50y - 115 = 0.$$

We can get rid of the linear terms by a translation. Assume that the system 0xy is translated to the point 0'(a,b) to define the coordinate system 0'XY. Then x = X + a and y = Y + b which gives $16(X + a)^2 + 25(Y + b)^2 - 64(X + a) + 50(Y + b) - 115 = 0$ or $16X^2 + 25Y^2 + 32(a - 2)X + 50(b + 1) + F = 0$.

By choosing a = 2 and b = -1, we can eliminate the linear terms. Equations of the translation are

$$x = X + 2$$
$$y = Y - 1.$$

QUESTION 5 (6 points)

Find the canonical equation, eccentricity, focus and directrix of the conic

$$x^2 + 2x + y + 1 = 0.$$

The equation can be written as $(x + 1)^2 + y = 0$. If we let x = X - 1 and y = Y we obtain the equation $Y = -X^2$ of a parabola, hence eccentricity is 1. In O'XY focus is at the point $\left(0, -\frac{1}{4}\right)$ and directrix is the straight line $Y = \frac{1}{4}$. In Oxy focus is at $\left(-1, -\frac{1}{4}\right)$ and directrix is the line $y = \frac{1}{4}$.

QUESTION 6 (20 points)

Let \mathcal{E} and \mathcal{H} be two central conics with eccentricities $1/\sqrt{2}$ and $\sqrt{2}$, respectively. If \mathcal{E} and \mathcal{H} are both centered at the origin and F(4,0) is a common focus,

a) write an equation of \mathcal{E} ,

The conic is an ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where $a = \frac{f}{e} = 4\sqrt{2}$ and $b^2 = a^2 - f^2 = 16$. Then, the canonical equation of \mathcal{E} is

$$\frac{x^2}{32} + \frac{y^2}{16} = 1$$

b) write an equation of \mathcal{H} ,

The conic is an hyperbola with equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where $a = \frac{f}{e} = 4\sqrt{2}/2$ and $b^2 = a^2 + f^2 = 24$. Then, the canonical equation of \mathcal{H} is $\frac{x^2}{8} - \frac{y^2}{24} = 1.$

c) find the intersection point(s) of \mathcal{E} and \mathcal{H} .

We can write the equations of \mathcal{E} and \mathcal{H} , respectively as $x^2 + 2y^2 = 32$ $3x^2 - y^2 = 24$ which gives $x^2 = \frac{80}{7}$ and $y^2 = \frac{72}{7}$. There are four intersection points: $\left(\pm \sqrt{\frac{80}{7}}, \pm \sqrt{\frac{72}{7}}\right)$.

QUESTION 7 (20 points)

In each of the following cases, name and sketch the object which is defined by the given equation in \mathbb{R}^3 .

a)
$$y - 3 = 0$$
,

b)
$$y^2 - z^2 = 4$$
,

c)
$$3x^2 + 4z^2 = 0$$
,

d)
$$z^2 - 8z = 0$$
,

e)
$$x^2 - 2y^2 + 3z^2 - 4 = 0$$
.