2014-2015 Fall Semester
Math 115 Analytic Geometry
Final Examination
Monday, January 10th, 2015

Name, Last Name:					
Student No:					
Department:			Signature:		

Duration: 115 minutes	-	7 Questions on 4 Pages	-	Total 80 Points

QUESTION 1 (10 points)

Given the straight lines

$$
\ell_{1}:\left\{\begin{array}{l}
x=2 t+3 \\
y=t+4
\end{array} \quad \text { and } \quad \ell_{2}:\left\{\begin{array}{l}
x=2 t+3 \\
y=4 t+4
\end{array}\right.\right.
$$

Write an equation of the straight line which passes through $\ell_{1} \cap \ell_{2}$ and which bisects the angle between ℓ_{1} and ℓ_{2}.

Obviously the point $P(3,4)$ is the intersection point of ℓ_{1} and ℓ_{2}. We can take $\vec{u}=(2,1)$
and $\vec{v}=(1,2)$ as direction vectors of these lines. Since $|\vec{u}|=|\vec{v}|$, the vector $\vec{u}+\vec{v}=$
$(3,3)$ bisects the angle between \vec{u} and \vec{v}. Equation of the required line is

$$
\ell:\left\{\begin{array}{l}
x=3 t+3 \\
y=3 t+4
\end{array}\right.
$$

QUESTION 2 (10 points)

Write an equation of the line of intersection of planes $x+y+z=0$ and $y=z$.
Normal vectors of the planes in question are $\vec{N}_{1}=(1,1,1)$ and $\vec{N}_{2}=(0,1,-1)$. A direction vector of the line of intersection is $\vec{u}=\vec{N}_{1} \times \vec{N}_{2}=(-2,1,1)$. The point $(0,0,0)$ is a common point of the given planes. Then an equation of the intersection line is $(x, y, z)=(-2 t, t, t)$.

QUESTION 3 (7 points)

Write the equations of changing the coordinates of an appropriate transformation which eliminates the $x y$ term of the equation

$$
x^{2}+4 x y-2 y^{2}-6=0
$$

Characteristic equation is $2 m^{2}+3 m-2=0$, whose roots are $m_{1}=-2$ and $m_{2}=\frac{1}{2}$. Jf we letm $=m_{1}=\frac{1}{2}$, we get $\theta=\operatorname{atan} \frac{1}{2}$. A rotation of measure θ around the origin eliminates the $x y$ term. To obtain the related equations of the rotation we first compute $\sin \theta=\frac{1}{\sqrt{5}}$ and $\cos \theta=\frac{2}{\sqrt{5}}$. then

$$
\begin{aligned}
& x=\frac{1}{\sqrt{5}}\left(2 x^{\prime}-y^{\prime}\right) \\
& y=\frac{1}{\sqrt{5}}\left(x^{\prime}+2 y^{\prime}\right) .
\end{aligned}
$$

QUESTION 4 (7 points)

Write the equations of changing the coordinates of an appropriate transformation which eliminates the terms x and y of the equation

$$
16 x^{2}+25 y^{2}-64 x+50 y-115=0
$$

We can get rid of the linear terms by a translation. Assume that the system $O x y$ is translated to the point $O^{\prime}(a, b)$ to define the coordinate system $O^{\prime} X Y$. Then $x=X+a$ and $y=Y+b$ which gives $16(X+a)^{2}+25(Y+b)^{2}-64(X+a)+50(Y+b)-115=0$ or $16 X^{2}+25 Y^{2}+32(a-2) X+50(b+1)+F=0$.

By choosing $a=2$ and $b=-1$, we can eliminate the linear terms. Equations of the
translation are

$$
\begin{aligned}
& x=X+2 \\
& y=Y-1 .
\end{aligned}
$$

QUESTION 5 (6 points)

Find the canonical equation, eccentricity, focus and directrix of the conic

$$
\begin{aligned}
& \qquad x^{2}+2 x+y+1=0 \text {. } \\
& \text { The equation can be written as }(x+1)^{2}+y=0 \text {. If we let } x=X-1 \text { and } y=Y \text { we } \\
& \text { obtain the equation } Y=-X^{2} \text { of a parabola, hence eccentricity is } 1 \text {. In } O^{\prime} X Y \text { focus is at } \\
& \text { the point }\left(0,-\frac{1}{4}\right) \text { and directrix is the straight line } Y=\frac{1}{4} \text {. } \\
& \text { In Oxy focus is at }\left(-1,-\frac{1}{4}\right) \text { and directrix is the line } y=\frac{1}{4} \text {. }
\end{aligned}
$$

QUESTION 6 (20 points)

Let \mathcal{E} and \mathcal{H} be two central conics with eccentricities $1 / \sqrt{2}$ and $\sqrt{2}$, respectively. If \mathcal{E} and \mathcal{H} are both centered at the origin and $F(4,0)$ is a common focus,
a) write an equation of \mathcal{E},

The conic is an ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $a=\frac{f}{e}=4 \sqrt{2}$ and $b^{2}=a^{2}-f^{2}=$ 16. Then, the canonical equation of \mathcal{E} is

$$
\frac{x^{2}}{32}+\frac{y^{2}}{16}=1
$$

b) write an equation of \mathcal{H},

The conic is an hyperbola with equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $a=\frac{f}{e}=4 \sqrt{2} / 2$ and $b^{2}=a^{2}+$ $f^{2}=24$. Then, the canonical equation of \mathcal{H} is

$$
\frac{x^{2}}{8}-\frac{y^{2}}{24}=1
$$

c) find the intersection point(s) of \mathcal{E} and \mathcal{H}.

$$
\begin{aligned}
& \text { We can write the equations of } \mathcal{E} \text { and } \mathcal{H} \text {, respectively as } \\
& \qquad \begin{array}{l}
x^{2}+2 y^{2}=32 \\
3 x^{2}-y^{2}=24
\end{array} \\
& \text { which gives } x^{2}=\frac{80}{7} \text { and } y^{2}=\frac{72}{7} \text {. There are four intersection points: } \\
& \qquad\left(\pm \sqrt{\frac{80}{7}}, \pm \sqrt{\frac{72}{7}}\right) .
\end{aligned}
$$

QUESTION 7 (20 points)

In each of the following cases, name and sketch the object which is defined by the given equation in \mathbb{R}^{3}.
a) $y-3=0$,
b) $y^{2}-z^{2}=4$,
c) $3 x^{2}+4 z^{2}=0$,
d) $z^{2}-8 z=0$,
e) $x^{2}-2 y^{2}+3 z^{2}-4=0$.

