METU
 Department of Mathematics

Math 115	Analytical Geometry		Midterm II	Fall 2014-2015 Date: 2.12.2014	
Instructors: C.Bozkaya A.Doğanaksoy S.Finashin Y.Talu	Last Name		Name		
	Student No		Signature		
		5 Questions	ages Total 70 Points	Time: 17.40 100 minutes	

READ THE PROBLEMS CAREFULLY AND GIVE DETAILED WORK

1. (6 pts) Given three vectors \vec{a}, \vec{b}, and \vec{c} in \mathbb{R}^{3}, with $\vec{a}+\vec{b}+\vec{c}=0$, prove that $\vec{a} \times \vec{b}=$ $\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

Solution: $\vec{a} \times(\vec{a}+\vec{b}+\vec{c})=0 \quad \Longrightarrow \quad \vec{a} \times \vec{b}+\vec{a} \times \vec{c}=0 \quad \Longrightarrow \quad \vec{a} \times \vec{b}=\vec{c} \times \vec{a}$.
$(\vec{a}+\vec{b}+\vec{c}) \times \vec{b}=0 \quad \Longrightarrow \quad \vec{a} \times \vec{b}+\vec{c} \times \vec{b}=0 \quad \Longrightarrow \quad \vec{a} \times \vec{b}=\vec{b} \times \vec{c}$.

Solution 2: Observe that $\vec{a}+\vec{b}=-\vec{c}$ means that the given vectors enclose a triangle. The area of this triangle can be written as

$$
\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2}|\vec{b} \times \vec{c}|=\frac{1}{2}|\vec{c} \times \vec{a}| .
$$

On the other hand the direction of vectors $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$, and $\vec{c} \times \vec{a}$ are also the same, (these vectors are perpendicular to the plane of the triangle). Then the equality holds.
2. (12 pts) a) Suppose that \vec{u} and \vec{v} are vectors in \mathbb{R}^{3}, such that $|\vec{u}|=2,|\vec{v}|=3$, and $\vec{u} \times \vec{v}=$ $(3,-3,3)$. Evaluate $|\vec{u} \cdot \vec{v}|$.

Solution: $(\vec{u} \cdot \vec{v})^{2}=|u|^{2}|v|^{2} \cos ^{2} \theta=|u|^{2}|v|^{2}\left(1-\sin ^{2} \theta\right)=|u|^{2}|v|^{2}\left(1-\frac{|\vec{u} \times \vec{v}|^{2}}{|u|^{2}|v|^{2}}\right)$.

Then we have

$$
(\vec{u} \cdot \vec{v})^{2}=|u|^{2}|v|^{2}-|\vec{u} \times \vec{v}|^{2}=4 \cdot 9-27=9 .
$$

Finally, $|\vec{u} \cdot \vec{v}|=3$.
b) Find $\left|\operatorname{proj}_{\vec{u}} \vec{v}\right|$ (the length of projection of \vec{v} to \vec{u}).

Solution: $\left|\operatorname{proj}_{\vec{u}} \vec{v}\right|=|\vec{v}| \cos \theta=\frac{|\vec{u} \cdot \vec{v}|}{|\vec{u}|}=\frac{3}{2}$.
3. (21 pts) Plane \mathcal{P} contains the line $\ell_{1}: x-1=\frac{y-4}{-2}=\frac{z-5}{-1}$ and is parallel to the line $\ell_{2}: x=\frac{y}{2}=\frac{z}{-1}$. (A plane and line are parallel if they have no common points).
a) Find an equation of plane \mathcal{P}.

Solution: $\vec{L}_{1}=(1,-2,-1)$ and $\vec{L}_{2}=(1,2,-1)$ are direction vectors for ℓ_{1} and ℓ_{2} respectively.
$\vec{N}=\vec{L}_{1} \times \vec{L}_{2}=\left|\begin{array}{rrr}\vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & -1 \\ 1 & 2 & -1\end{array}\right|=(4,0,4)$ is a normal vector for the plane \mathcal{P}.
$P_{0}(1,4,5)$ is a point on ℓ_{1}, and ℓ_{1} lies on \mathcal{P}. So, P_{0} is also a point on \mathcal{P}.

An equation of \mathcal{P} is $4(x-1)+0(y-4)+4(z-5)=0$, or equivalently $4 x+4 z-24=0$, or

$$
x+z-6=0 \text {. }
$$

b) Find the distance $\left|P_{1} \mathcal{P}\right|$ from the point $P_{1}(1,2-1)$ to the plane \mathcal{P}.

Solution: $\left|P_{1} \mathcal{P}\right|=\frac{|1+(-1)-6|}{\sqrt{1+1}}=\frac{6}{\sqrt{2}}=3 \sqrt{2}$.
c) Find the distance $\left|\ell_{2} \mathcal{P}\right|$ from line ℓ_{2} to the plane \mathcal{P}.

Solution: Since $1=\frac{2}{2}=\frac{-1}{-1}, \quad P_{1}(1,2,-1)$ is a point on ℓ_{2}.

Therefore, $\left|\ell_{2} \mathcal{P}\right|=\left|P_{1} \mathcal{P}\right|=3 \sqrt{2}$.
OR

Since ℓ_{2} and \mathcal{P} are parallel, $\quad\left|\ell_{2} \mathcal{P}\right|=|P \mathcal{P}|$ for any point P on ℓ_{2}.
4. (10 pts) Find the values of α and β so that the line passing through the points $P(3,6,8)$ and $Q(1, \beta,-10)$ intersects the plane $\alpha x+y-3 z=10$ at the point $R(2,3,-1)$.

Solution: Since R is a point on the plane $\alpha x+y-3 z=10$,

$$
2 \alpha+3-3(-1)=10 \quad \Rightarrow \quad \alpha=2
$$

Since P, Q and R are on the same line, $\overrightarrow{P Q}$ is parallel to $\overrightarrow{P R}$, that is $\overrightarrow{P Q}=k \overrightarrow{P R}$, where k is a constant. Then,

$$
(1-3, \beta-6,-10-8)=k(2-3,3-6,-1-8) \quad \Rightarrow \quad k=2 \quad \text { and } \quad \beta-6=-3 k
$$

Thus,

$$
\beta=6-3(2)=0
$$

5. (21 pts) Consider line $d: x+y+2=0$, and point $F(1,1)$.
a) Find an equation of a parabola, C, with directrix d and focus F.

Solution: $P(x, y) \in C \quad \Longleftrightarrow \quad|P F|=|P d| \quad \Longleftrightarrow \quad \sqrt{(x-1)^{2}+(y-1)^{2}}=\frac{|x+y+2|}{\sqrt{2}} \Longleftrightarrow$ $2\left((x-1)^{2}+(y-1)^{2}\right)=(x+y+2)^{2} \Longleftrightarrow 2 x^{2}-4 x+2+y^{2}-4 y+2=x^{2}+y^{2}+2 x y+4 x+4 y+4$

$$
\Longleftrightarrow \quad x^{2}+y^{2}-2 x y-8 x-8 y=0
$$

b) Find the vertex V of the parabola and its axis ℓ.

Solution: Axis ℓ is perpendicular to d and passes through (1, 1), thus, its equation is
$\ell:(y-1)=k(x-1), \quad$ where $k \cdot(-1)=-1 \quad \Longleftrightarrow y=x$.
$V=\frac{1}{2}(F+G)$ where $G=d \cap \ell$. System $y=x, x+y+2=0$, gives $x=y=-1$, and $G(-1,-1)$.

So, $V=\frac{1}{2}((1,1)+(-1,-1)=(0,0)$.
c) Check if point $P(3,-1)$ lies on the parabola C.

Solution: Let $x=3, y=-1$. Then $x^{2}+y^{2}-2 x y-8 x-8 y=9+1+6-24+8=0$.

So, P lies on the parabola.
d) Sketch d, F, V, and ℓ on the coordinate plane and indicate the position of C with respect to them.

