M E T U Department of Mathematics

Math 115	Analytical Geometry		Midterm II	Fall 20 Date: 2	Fall 2014–2015 Date: 2.12.2014	
Instructors: C.Bozkaya A.Doğanaksov	Last Name		Name			
S.Finashin Y.Talu	Student No		Signature			
1 2 3	3 4 5	5 Questions o	n 4 Pages Total 70 Points	<i>Time: 17.40</i> <i>100 minutes</i>	total	

READ THE PROBLEMS CAREFULLY AND GIVE DETAILED WORK

1. (6 pts) Given three vectors \vec{a} , \vec{b} , and \vec{c} in \mathbb{R}^3 , with $\vec{a} + \vec{b} + \vec{c} = 0$, prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.

Solution: $\overrightarrow{a} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0 \implies \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = 0 \implies \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{a}.$

 $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{b} = 0 \implies \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{b} = 0 \implies \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c}.$

Solution 2: Observe that $\vec{a} + \vec{b} = -\vec{c}$ means that the given vectors enclose a triangle. The area of this triangle can be written as

$$\frac{1}{2}|\overrightarrow{a}\times\overrightarrow{b}| = \frac{1}{2}|\overrightarrow{b}\times\overrightarrow{c}| = \frac{1}{2}|\overrightarrow{c}\times\overrightarrow{a}|.$$

On the other hand the direction of vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, and $\vec{c} \times \vec{a}$ are also the same, (these vectors are perpendicular to the plane of the triangle). Then the equality holds.

2. (12 pts) a) Suppose that \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , such that $|\vec{u}| = 2$, $|\vec{v}| = 3$, and $\vec{u} \times \vec{v} = (3, -3, 3)$. Evaluate $|\vec{u} \cdot \vec{v}|$.

Solution:
$$(\overrightarrow{u} \cdot \overrightarrow{v})^2 = |u|^2 |v|^2 \cos^2 \theta = |u|^2 |v|^2 (1 - \sin^2 \theta) = |u|^2 |v|^2 (1 - \frac{|\overrightarrow{u} \times \overrightarrow{v}|^2}{|u|^2 |v|^2}).$$

Then we have

$$(\overrightarrow{u}\cdot\overrightarrow{v})^2 = |u|^2|v|^2 - |\overrightarrow{u}\times\overrightarrow{v}|^2 = 4\cdot9 - 27 = 9$$

Finally, $|\vec{u} \cdot \vec{v}| = 3.$

b) Find $|\operatorname{proj}_{\overrightarrow{u}} \overrightarrow{v}|$ (the length of projection of \overrightarrow{v} to \overrightarrow{u}).

Solution: $|\operatorname{proj}_{\overrightarrow{u}} \overrightarrow{v}| = |\overrightarrow{v}| \cos \theta = \frac{|\overrightarrow{u} \cdot \overrightarrow{v}|}{|\overrightarrow{u}|} = \frac{3}{2}.$

3. (21 pts) Plane \mathcal{P} contains the line ℓ_1 : $x-1 = \frac{y-4}{-2} = \frac{z-5}{-1}$ and is parallel to the line ℓ_2 : $x = \frac{y}{2} = \frac{z}{-1}$. (A plane and line are parallel if they have no common points).

a) Find an equation of plane \mathcal{P} .

Solution: $\overrightarrow{L}_1 = (1, -2, -1)$ and $\overrightarrow{L}_2 = (1, 2, -1)$ are direction vectors for ℓ_1 and ℓ_2 respectively.

 $\overrightarrow{N} = \overrightarrow{L}_1 \times \overrightarrow{L}_2 = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & -2 & -1 \\ 1 & 2 & -1 \end{vmatrix} = (4, 0, 4) \text{ is a normal vector for the plane } \mathcal{P}.$

 $P_0(1,4,5)$ is a point on ℓ_1 , and ℓ_1 lies on \mathcal{P} . So, P_0 is also a point on \mathcal{P} .

An equation of \mathcal{P} is 4(x-1) + 0(y-4) + 4(z-5) = 0, or equivalently 4x + 4z - 24 = 0, or

```
x + z - 6 = 0.
```

b) Find the distance $|P_1\mathcal{P}|$ from the point $P_1(1, 2-1)$ to the plane \mathcal{P} .

Solution: $|P_1\mathcal{P}| = \frac{|1+(-1)-6|}{\sqrt{1+1}} = \frac{6}{\sqrt{2}} = 3\sqrt{2}.$

c) Find the distance $|\ell_2 \mathcal{P}|$ from line ℓ_2 to the plane \mathcal{P} .

Solution: Since $1 = \frac{2}{2} = \frac{-1}{-1}$, $P_1(1, 2, -1)$ is a point on ℓ_2 .

Therefore, $|\ell_2 \mathcal{P}| = |P_1 \mathcal{P}| = 3\sqrt{2}$.

OR

Since ℓ_2 and \mathcal{P} are parallel, $|\ell_2 \mathcal{P}| = |P\mathcal{P}|$ for any point P on ℓ_2 .

4. (10 pts) Find the values of α and β so that the line passing through the points P(3,6,8) and $Q(1,\beta,-10)$ intersects the plane $\alpha x + y - 3z = 10$ at the point R(2,3,-1).

Solution: Since R is a point on the plane $\alpha x + y - 3z = 10$,

$$2\alpha + 3 - 3(-1) = 10 \quad \Rightarrow \quad \alpha = 2.$$

Since P, Q and R are on the same line, \overrightarrow{PQ} is parallel to \overrightarrow{PR} , that is $\overrightarrow{PQ} = k\overrightarrow{PR}$, where k is a constant. Then,

 $(1-3,\beta-6,-10-8) = k(2-3,3-6,-1-8) \Rightarrow k=2$ and $\beta-6 = -3k$.

Thus,

$$\beta = 6 - 3(2) = 0$$

5. (21 pts) Consider line d: x + y + 2 = 0, and point F(1, 1).

a) Find an equation of a parabola, C, with directrix d and focus F.

Solution:
$$P(x,y) \in C \iff |PF| = |Pd| \iff \sqrt{(x-1)^2 + (y-1)^2} = \frac{|x+y+2|}{\sqrt{2}} \iff 2((x-1)^2 + (y-1)^2) = (x+y+2)^2 \iff 2x^2 - 4x + 2 + y^2 - 4y + 2 = x^2 + y^2 + 2xy + 4x + 4y + 4 \iff x^2 + y^2 - 2xy - 8x - 8y = 0$$

b) Find the vertex V of the parabola and its axis ℓ .

Solution: Axis ℓ is perpendicular to d and passes through (1, 1), thus, its equation is

 $\ell:(y-1)=k(x-1), \quad \text{where} \ \ k\cdot(-1)=-1 \quad \Longleftrightarrow y=x.$

 $V = \frac{1}{2}(F+G)$ where $G = d \cap \ell$. System y = x, x + y + 2 = 0, gives x = y = -1, and G(-1, -1).

So, $V = \frac{1}{2}((1,1) + (-1,-1) = (0,0).$

c) Check if point P(3, -1) lies on the parabola C.

Solution: Let x = 3, y = -1. Then $x^2 + y^2 - 2xy - 8x - 8y = 9 + 1 + 6 - 24 + 8 = 0$.

So, P lies on the parabola.

d) Sketch d, F, V, and ℓ on the coordinate plane and indicate the position of C with respect to them.