Name:

Student number:
METU MATH 116, Final Examination
Date \mathfrak{E} time. June 7, 2011, 13:30-15:30 (120 minutes).
Instructors. Finashin, Pamuk, Pierce, Solak.
Problem 1 (12 points). Is $x^{3}+x+1$ reducible over:
(a) \mathbb{Q} ?

1	
2	
3	
4	
5	
6	
7	
Σ	

Solution. $f(x)=x^{3}+x+1$ has degree $3 \Longrightarrow f$ is reducible if and only if f has a root (it concerns parts (a),(b), and (c)).
$\frac{p}{q} \in \mathbb{Q}$ is a root $\Longrightarrow p|1, q| 1 \Longrightarrow \frac{p}{q}= \pm 1$.
$f(1)=3, f(-1)=-1 \Longrightarrow f(x)$ has no roots $\Longrightarrow f$ is irreducible
(b) \mathbb{Z}_{3} ?

Solution. $f(1)=0 \in \mathbb{Z}_{3}, \Longrightarrow f$ has a root $\Longrightarrow f$ is reducible (divisible by $(x-1)$).
(c) \mathbb{Z}_{5} ?

Solution. $f(0)=1, f(1)=3, f(2)=11, f(3)=31, f(4)=69$.
No zeros modulo $5 \Longrightarrow f$ is irreducible over \mathbb{Z}_{5}.
Problem 2 (8 points). Letting $f(x)=3 x^{4}+5 x^{3}+x^{2}+5 x-2$, write $f(x)$ as a product of irreducible polynomials over \mathbb{Q}.

Solution. $\frac{p}{q}$ is a root of $f \Longrightarrow p|2, q| 3 \Longrightarrow p \in\{ \pm 1, \pm 2\}, q \in\{ \pm 1, \pm 3\}$
$\Longrightarrow \frac{p}{q} \in\left\{ \pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}\right\}$.
$f(1)=3+5+1+5-2 \neq 0$,
$f(-1)=3-5+1-5-2 \neq 0$,
$f(2)=48+40+4+10-2 \neq 0$,
$f(-2)=48-40+4-10-2=0$.
-2 is a root $\Longrightarrow f(x)$ is divisible by $(x+2)$. Using division algorithm,
$f(x)=(x+2)\left(3 x^{3}-x^{2}+3 x-1\right)$
$\frac{1}{3}$ is a root of $3 x^{3}-x^{2}+3 x-1$
$3 x^{3}-x^{2}+3 x-1=(3 x-1)\left(x^{2}+1\right)$.
Answer: $f(x)=(x+2)(3 x-1)\left(x^{2}+1\right)$
$(x+2),(3 x-1)$ have degree $1 \Longrightarrow$ irreducible
$x^{2}+1>0$ for $x \in \mathbb{Q} \Longrightarrow$ no rational roots \Longrightarrow irreducible.

Problem 3 (5 points). Is every integral domain a field? Explain.

Problem 4 (15 points). Find a polynomial $f(x)$ of least positive degree with the given properties. (Your answer should show the coefficients of $f(x)$.)
(a) $f(x)$ is over \mathbb{C}, and $f(2 \mathrm{i})=0=f(1+\mathrm{i})$.
(b) $f(x)$ is over \mathbb{R}, and 2 i and $1+\mathrm{i}$ are zeros of it.
(c) $f(x)$ is over \mathbb{Z}_{2}, and 1 (that is, [1]) is a zero of multiplicity 4 .

Answers.
(a) $f(x)=$
(b) $f(x)=$
(c) $f(x)=$

Problem 5 (7 points). Over a field K, suppose $f(x)$ is a polynomial with no zeros in K. Must $f(x)$ be irreducible over K ? Explain.

Solution. No. For example, the polynomial $x^{4}+2 x^{2}+1$ over \mathbb{R} has no zeros in \mathbb{R} but it is reducible over \mathbb{R}.

Problem 6 (13 points). Working over \mathbb{Z}_{3}, letting

$$
f(x)=x^{5}+x+1, \quad g(x)=x^{2}+1
$$

find $s(x)$ and $t(x)$ such that $f(x) \cdot s(x)+g(x) \cdot t(x)=1$.
Solution. $f(x)=x^{5}+x+1=g(x)\left(x^{2}+2 x\right)+2 x+1$ $g(x)=x^{2}+1=(2 x+1)(2 x+2)+2$

Then,

$$
\begin{aligned}
& 2=g(x)-(2 x+1)(2 x+2) \\
& 2=g(x)-\left[f(x)-g(x)\left(x^{3}+2 x\right)\right](2 x+2) \\
& 2=f(x)(x+1)+g(x)\left[1+\left(x^{3}+2 x\right)(2 x+2)\right] \\
& 2=f(x)(x+1)+g(x)\left(2 x^{4}+2 x^{3}+x^{2}+x+1\right)
\end{aligned}
$$

Hence,

$$
1=f(x)(2 x+2)+g(x)\left(x^{4}+x^{3}+2 x^{2}+2 x+2\right)
$$

So, $s(x)=2 x+2$ and $t(x)=x^{4}+x^{3}+2 x^{2}+2 x+2$.

Problem 7 (20 points). Let R be the subring $\{x+y i: x, y \in \mathbb{Z}\}$ of \mathbb{C}, and let I be the ideal $\{x+y \mathrm{i}: x, y \in 2 \mathbb{Z}\}$ of R.
(a) How many additive cosets has I in R ? List them clearly.
(b) Is the quotient R / I cyclic as an additive group? Explain.
(c) Show that the function ϕ from R to \mathbb{Z}_{2} given by

$$
\begin{equation*}
\phi(x+y \mathbf{i})=[x+y] \tag{*}
\end{equation*}
$$

is a ring homomorphism.
(d) Does the same formula $(*)$ define a ring homomorphism from R to \mathbb{Z}_{3} ? Explain.

