Name:

Student number:

METU MATH 116, Final Examination Date & time. June 7, 2011, 13:30–15:30 (120 minutes). Instructors. Finashin, Pamuk, Pierce, Solak.

Problem 1 (12 points). Is $x^3 + x + 1$ reducible over:

(a) \mathbb{Q} ?

Solution. $f(x) = x^3 + x + 1$ has degree $3 \implies f$ is reducible if and only if f has a root (it concerns parts (a),(b), and (c)).

 $\frac{p}{q} \in \mathbb{Q}$ is a root $\implies p|1, q|1 \implies \frac{p}{q} = \pm 1.$

 $f(1) = 3, f(-1) = -1 \implies f(x)$ has no roots $\implies f$ is irreducible

(b) \mathbb{Z}_3 ?

Solution. $f(1) = 0 \in \mathbb{Z}_3$, \implies f has a root \implies f is reducible (divisible by (x - 1)).

(c) \mathbb{Z}_5 ?

Solution. f(0) = 1, f(1) = 3, f(2) = 11, f(3) = 31, f(4) = 69.

No zeros modulo $5 \implies f$ is irreducible over \mathbb{Z}_5 .

Problem 2 (8 points). Letting $f(x) = 3x^4 + 5x^3 + x^2 + 5x - 2$, write f(x) as a product of irreducible polynomials over \mathbb{Q} .

Solution. $\frac{p}{q}$ is a root of $f \implies p|2, q|3 \implies p \in \{\pm 1, \pm 2\}, q \in \{\pm 1, \pm 3\}$ $\implies \frac{p}{q} \in \{\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}\}.$ $f(1) = 3 + 5 + 1 + 5 - 2 \neq 0,$ $f(-1) = 3 - 5 + 1 - 5 - 2 \neq 0,$ $f(2) = 48 + 40 + 4 + 10 - 2 \neq 0,$ f(-2) = 48 - 40 + 4 - 10 - 2 = 0. -2 is a root $\implies f(x)$ is divisible by (x + 2). Using division algorithm, $f(x) = (x + 2)(3x^3 - x^2 + 3x - 1)$ $\frac{1}{3}$ is a root of $3x^3 - x^2 + 3x - 1$ $3x^3 - x^2 + 3x - 1 = (3x - 1)(x^2 + 1).$ <u>Answer:</u> $f(x) = (x + 2)(3x - 1)(x^2 + 1)$ (x + 2), (3x - 1) have degree $1 \implies$ irreducible $x^2 + 1 > 0$ for $x \in \mathbb{Q} \implies$ no rational roots \implies irreducible.

1	
2	
3	
4	
5	
6	
7	
Σ	

Problem 3 (5 points). Is every integral domain a field? Explain.

Problem 4 (15 points). Find a polynomial f(x) of least positive degree with the given properties. (Your answer should show the coefficients of f(x).)

- (a) f(x) is over \mathbb{C} , and f(2i) = 0 = f(1+i).
- (b) f(x) is over \mathbb{R} , and 2i and 1 + i are zeros of it.
- (c) f(x) is over \mathbb{Z}_2 , and 1 (that is, [1]) is a zero of multiplicity 4.

Answers.

- (a) f(x) =
- (b) f(x) =
- (c) f(x) =

Problem 5 (7 points). Over a field K, suppose f(x) is a polynomial with no zeros in K. Must f(x) be irreducible over K? Explain.

Solution. No. For example, the polynomial $x^4 + 2x^2 + 1$ over \mathbb{R} has no zeros in \mathbb{R} but it is reducible over \mathbb{R} .

Problem 6 (13 points). Working over \mathbb{Z}_3 , letting

$$f(x) = x^5 + x + 1,$$
 $g(x) = x^2 + 1,$

find s(x) and t(x) such that $f(x) \cdot s(x) + g(x) \cdot t(x) = 1$.

Solution. $f(x) = x^5 + x + 1 = g(x)(x^2 + 2x) + 2x + 1$ $g(x) = x^2 + 1 = (2x + 1)(2x + 2) + 2$

Then,

$$2 = g(x) - (2x + 1)(2x + 2)$$

$$2 = g(x) - [f(x) - g(x)(x^3 + 2x)](2x + 2)$$

$$2 = f(x)(x + 1) + g(x)[1 + (x^3 + 2x)(2x + 2)]$$

$$2 = f(x)(x + 1) + g(x)(2x^4 + 2x^3 + x^2 + x + 1)$$

Hence,

$$1 = f(x)(2x+2) + g(x)(x^4 + x^3 + 2x^2 + 2x + 2)$$

So, $s(x) = 2x + 2$ and $t(x) = x^4 + x^3 + 2x^2 + 2x + 2$.

Problem 7 (20 points). Let R be the subring $\{x + yi : x, y \in \mathbb{Z}\}$ of \mathbb{C} , and let I be the ideal $\{x + yi : x, y \in 2\mathbb{Z}\}$ of R.

- (a) How many additive cosets has I in R? List them clearly.
- (b) Is the quotient R/I cyclic as an additive group? Explain.
- (c) Show that the function ϕ from R to \mathbb{Z}_2 given by

$$\phi(x+y\mathbf{i}) = [x+y] \tag{(*)}$$

is a ring homomorphism.

(d) Does the same formula (*) define a ring homomorphism from R to \mathbb{Z}_3 ? Explain.