Name:
Student number:
METU MATH 116, Midterm 2
Tuesday, May 3, 2011, at 17:40 (100 minutes), totally 60 points
Instructors: S.Finashin, S.Pamuk, D.Pierce, E.Solak
Instructions: Please, be accurate and show clearly the logic of your solutions.
Only the answers are not enough: indicate your calculations and arguments.
Problem 1. ($\mathbf{9} \mathbf{p t s}$) Of the set $\{1,2,3,4,5,6,7,9\}$, let $\sigma \in S_{9}$ be the permutation

1	
2	
3	
4	
5	
6	
7	
8	
Σ	

$$
\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 4 & 1 & 6 & 8 & 2 & 9 & 5
\end{array}\right]
$$

(a) Write σ as a product of disjoint cycles.
(b) Find σ^{100}. (Hint: find the order of σ).
(c) Determine whether permutation σ is even or odd.

Problem 2. (6 pts) Consider transpositions $\alpha=(12), \beta=(23), \gamma=(34)$ in S_{4}.
(a) Find the product $\alpha \beta \gamma$.
(b) Find $g \in S_{4}$ such that $\beta=g \alpha g^{-1}$.

Problem 3. (8 pts)

(a) Find the number of cosets for subgroups $3 \mathbb{Z} \subset \mathbb{Z}$ and $\mathbb{Z} \subset \mathbb{Q}$. In the first case, give an explicit list of these cosets.
(b) Find the group multiplication table of $\mathbb{Z} / 3 \mathbb{Z}$ (pay attention that the group operation is addition).
(c) Prove that every element of \mathbb{Q} / \mathbb{Z} has finite order.

Problem 4. (7 pts) Assume that G is a group of prime order p.
(a) What can be the order of an element $g \in G$? (Explain !)
(b) Prove that G is a cyclic group.

Problem 5. (10 pts) Suppose that H and N are subgroups of a group G. Assume that subgroup N is normal, and let $K=H \cap N$.
(a) Prove that K is a normal subgroup of H.
(b) Let $A=\{x \in G: x K=K x\}$. Prove that $H \subseteq A$.
(c) Prove that A is a subgroup of G.

Problem 6. (5 pts) Let H and K be normal subgroups of G such that G / H has order 5, and G / K has order 3. Prove that for any $g \in G, g^{15} \in K \cap H$.

Problem 7. (6 pts) Consider subsets $4 \mathbb{Z} \subset \mathbb{Z},\{0\} \subset \mathbb{Z}, \varnothing \subset \mathbb{Z}, \mathbb{Z} \subset \mathbb{Q},(0, \infty) \subset \mathbb{R}$, $\{[0],[1],[2],[4]\} \subset \mathbb{Z}_{6}, M_{2}(\mathbb{Z}) \subset M_{2}(\mathbb{R})$.
(a) Which of the above examples are NOT subrings? Why they are not subrings ?
(b) Which ones are NOT ideals? Why not?

Problem 8. (9 pts) In each of the following two subrings of \mathbb{Z}_{12}, find a unity or show that there is no unity (multiplicative identity).
(a) $2 \mathbb{Z}_{12}=\{[0],[2],[4],[6],[8],[10]\}$
(b) $3 \mathbb{Z}_{12}=\{[0],[3],[6],[9]\}$
(c) Find all the zero divisors in the ring \mathbb{Z}_{12}.

