Name:

Student number:

METU MATH 116, Resit Exam

June 17, 2015, at 14:30 (100 minutes), totally 80 points
Instructors: M.Bhupal, S.Finashin, F.Özbudak, E.Solak
Instructions: Please, be accurate and show clearly the logic of your solutions.

1	
2	
3	
4	
Σ	

Problem 1. (15 pts) Let R be a ring and $I \subset R$ its ideal. Prove that the set

$$
K_{I}=\{x \in R \mid x a=0 \text { for all } a \in I\}
$$

is also an ideal in R.

Problem 2. (20 pts) Let $I \subset \mathbb{Z}[x]$ be the principal ideal generated by polynomial $x \in R[x]$, namely, $I=(x)=\{x f(x) \mid f(x) \in \mathbb{Z}[x]\}$.
(a) Find and write explicitly an isomorphism $\mathbb{Z} \rightarrow \mathbb{Z}[x] / I$.
(b) Write explicitly the inverse map $\mathbb{Z}[x] / I \rightarrow \mathbb{Z}$ to the above isomorphism.
(c) For the principle ideal $J=\left(x^{2}+x\right) \subset \mathbb{Z}[x]$, show that the quotient ring $R=\mathbb{Z}[x] / J$ contains zero divisors.

Problem 3. ($\mathbf{1 0} \mathbf{p t s}$) Give an example of a polynomial $f(x) \in \mathbb{R}[x]$ of degree 4 over field \mathbb{R}, such that $f(x)$ is reducible, but have no real roots.

Problem 4. ($\mathbf{1 5} \mathbf{~ p t s}$) Write $f(x)=3 x^{4}+5 x^{3}+x^{2}+5 x-2$ as a product of irreducible polynomials over \mathbb{Q}.

Problem 5. (20 pts) Given polynomial $f(x)=x^{5}-x$
(a) present $f(x)$ as a product of irreducible factors over \mathbb{Z}_{5};
(b) find the roots of $f(x)$ in \mathbb{Q};
(c) find the complex roots of $f(x)$.

