M E T U Department of Mathematics

	Basic	Algebraic Structures	
	I	Final Examination	
Code Acad. Year Semester Instructors	: Math 116 : 2014-2015 : Spring : M.Bhupal, S.Finashin, F.Özbudak, E.Solak : 05 Lung 2015	Last Name : Name : Student No Department : Signature :	:
Time Duration	: 09:30 : 100 minutes	5 Questions on 5 Pages Total 80 Points	
1 2	3 4		

READ THE PROBLEMS CAREFULLY AND GIVE DETAILED WORK

1. (16 pts) a) Let R be a ring and I_1, I_2 be two ideals of R. For each of the following sets prove or disprove with a counterexample that they are ideals of R:

- $I_1 + I_2 = \{a + b : a \in I_1, b \in I_2\},\$
- $I_1 \cup I_2$,
- $I_1 \cap I_2$.

b) Let R be a ring and I_1, I_2 be two ideals of R. Prove that the set

 $I_1I_2 = \{a_1b_1 + a_2b_2 + \dots + a_nb_n : a_i \in I_1, b_i \in I_2, \text{ and } n \ge 1 \text{ is an integer}\}$

is an ideal of R.

2. (16 pts) a) Let $R = \mathbb{Z}_{18}$ and consider the principal ideals $I_1 = (6) = \{6x : x \in \mathbb{Z}_{18}\}$ and $I_2 = (9) = \{9x : x \in \mathbb{Z}_{18}\}$. Describe the ideal I_1I_2 (as defined in Question 1b above). Is it a principal ideal? Why?

b) Describe the quotient ring $\mathbb{Z}_{18}/(6)$, where (6) is the principal ideal as defined in Question 2a above.

3. (16 pts) Let $f(x), g(x) \in \mathbb{Z}_5[x]$ be the polynomials given by

 $f(x) = x^{2} + 2x + 2$ and $g(x) = x^{3} + 3x^{2} + 1$.

a) Find the polynomial $h(x) = GCD(f(x), g(x)) \in \mathbb{Z}_5[x]$, that is the greatest common divisor of f(x) and g(x).

b) Using Euclidean Algorithm, find polynomials $s(x), t(x) \in \mathbb{Z}_5[x]$ such that

$$h(x) = f(x)s(x) + g(x)t(x).$$

4. (16 pts) Let $f(x) = x^4 - 6x^3 + 10x^2 + 2x - 15 \in \mathbb{Q}[x]$. Note that the polynomial f(x) is also in the polynomial rings $\mathbb{R}[x]$ and $\mathbb{C}[x]$. Note also that $2 + i \in \mathbb{C}$ is a root of f(x). a) Factorize f(x) over \mathbb{C} (that is in $\mathbb{C}[x]$).

b) Factorize f(x) over \mathbb{R} (that is in $\mathbb{R}[x]$).

c) Factorize f(x) over \mathbb{Q} (that is in $\mathbb{Q}[x]$).

5. (16 pts) Let $M_2(\mathbb{Z})$ denote the ring of 2×2 matrices over \mathbb{Z} . Let $M_2(\mathbb{Z}_2)$ denote the ring of 2×2 matrices over \mathbb{Z}_2 . Consider the map

$$\theta: M_2(\mathbb{Z}) \to M_2(\mathbb{Z}_2)$$

by

$$\theta\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left[\begin{array}{cc}[a]&[b]\\[c]&[d]\end{array}\right].$$

Prove that θ is a (ring) homomorphism and describe the kernel of θ .