Department of Mathematics

	Basic Algebraic Structures Final Examination			
Code Acad. Year Semester Instructors	: Math 116 : 2014-2015 : Spring : M.Bhupal, S.Finashin, F.Özbudak, E.Solak	Last Name Name Department Signature	Student No	
Time Duration	: 09:30 : 100 minutes	5 Questions on 5 Pages Total 80 Points		
\square^{2}				

READ THE PROBLEMS CAREFULLY AND GIVE DETAILED WORK

1. (16 pts) a) Let R be a ring and I_{1}, I_{2} be two ideals of R. For each of the following sets prove or disprove with a counterexample that they are ideals of R :

- $I_{1}+I_{2}=\left\{a+b: a \in I_{1}, b \in I_{2}\right\}$,
- $I_{1} \cup I_{2}$,
- $I_{1} \cap I_{2}$.
b) Let R be a ring and I_{1}, I_{2} be two ideals of R. Prove that the set

$$
I_{1} I_{2}=\left\{a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}: a_{i} \in I_{1}, b_{i} \in I_{2}, \text { and } n \geq 1 \text { is an integer }\right\}
$$

is an ideal of R.
2. (16 pts) a) Let $R=\mathbb{Z}_{18}$ and consider the principal ideals $I_{1}=(6)=\left\{6 x: x \in \mathbb{Z}_{18}\right\}$ and $I_{2}=(9)=\left\{9 x: x \in \mathbb{Z}_{18}\right\}$. Describe the ideal $I_{1} I_{2}$ (as defined in Question 1b above). Is it a principal ideal? Why?
b) Describe the quotient ring $\mathbb{Z}_{18} /(6)$, where (6) is the principal ideal as defined in Question 2a above.
3. (16 pts) Let $f(x), g(x) \in \mathbb{Z}_{5}[x]$ be the polynomials given by

$$
f(x)=x^{2}+2 x+2 \text { and } g(x)=x^{3}+3 x^{2}+1 .
$$

a) Find the polynomial $h(x)=G C D(f(x), g(x)) \in \mathbb{Z}_{5}[x]$, that is the greatest common divisor of $f(x)$ and $g(x)$.
b) Using Euclidean Algorithm, find polynomials $s(x), t(x) \in \mathbb{Z}_{5}[x]$ such that

$$
h(x)=f(x) s(x)+g(x) t(x) .
$$

4. (16 pts) Let $f(x)=x^{4}-6 x^{3}+10 x^{2}+2 x-15 \in \mathbb{Q}[x]$. Note that the polynomial $f(x)$ is also in the polynomial rings $\mathbb{R}[x]$ and $\mathbb{C}[x]$. Note also that $2+i \in \mathbb{C}$ is a root of $f(x)$.
a) Factorize $f(x)$ over \mathbb{C} (that is in $\mathbb{C}[x]$).
b) Factorize $f(x)$ over \mathbb{R} (that is in $\mathbb{R}[x]$).
c) Factorize $f(x)$ over \mathbb{Q} (that is in $\mathbb{Q}[x])$.
5. (16 pts) Let $M_{2}(\mathbb{Z})$ denote the ring of 2×2 matrices over \mathbb{Z}. Let $M_{2}\left(\mathbb{Z}_{2}\right)$ denote the ring of 2×2 matrices over \mathbb{Z}_{2}. Consider the map

$$
\theta: M_{2}(\mathbb{Z}) \rightarrow M_{2}\left(\mathbb{Z}_{2}\right)
$$

by

$$
\theta\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
{[a]} & {[b]} \\
{[c]} & {[d]}
\end{array}\right]
$$

Prove that θ is a (ring) homomorphism and describe the kernel of θ.

