Name:

Student number:

METU MATH 116, Makeup Tuesday, June 10, 2015, at 11:40 (100 minutes), totally 60 points

Instructors: M.Bhupal, S.Finashin, F.Ozbudak, E.Solak

Instructions: Please, be accurate and show clearly the logic of your solutions. Only the answers are not enough: indicate your calculations and arguments.

Problem 1. (15 pts) Solve a lnear system in \mathbb{Z}_{13} .

$$[6]x + [2]y = [1] [5]x + y = [3]$$

1	
2	
3	
4	
Σ	

Problem 2. (15 pts) Assume that G is a group and $H \subset G$ its subgroup. (a) Prove that subgroup H is necessarily normal if it has index [G : H] = 2.

(b) Give an example of a subgroup H of index [G:H] = 3 which is not normal. Justify that it is not normal.

Problem 3. (15 pts) Consider the ring of upper triangular matrices $T_2 = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{Z} \}$ and let $I = \{ \begin{bmatrix} 0 & x \\ 0 & y \end{bmatrix} | x, y \in \mathbb{Z} \}$. (a) Verify that I is a (2-sided) ideal in T_2 .

(b) Prove that T_2/I is isomorphic to \mathbb{Z} . Write explicitly a map $T_2/I \to \mathbb{Z}$ and verify that it is a ring isomorphism.

Problem 4. (15 pts) (a) Present polynomial $f(x) = x^4 + x^3 + x^2 + x$ as a product of irreducible polynomials over \mathbb{Z}_3 . Explain, why your factors are irreducible.

(b) Show that polynomial $f(x) = 2x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q} .