Name:

Student number:

METU MATH 116, Makeup

Tuesday, June 10, 2015, at 11:40 (100 minutes), totally 60 points
Instructors: M.Bhupal, S.Finashin, F.Ozbudak, E.Solak
Instructions: Please, be accurate and show clearly the logic of your solutions.

1	
2	
3	
4	
Σ	

Problem 1. (15 pts) Solve a lnear system in \mathbb{Z}_{13}.

$$
\begin{array}{ll}
{[6] x+[2] y} & =[1] \\
{[5] x+y} & =[3]
\end{array}
$$

Problem 2. (15 pts) Assume that G is a group and $H \subset G$ its subgroup. (a) Prove that subgroup H is necessarily normal if it has index $[G: H]=2$.
(b) Give an example of a subgroup H of index $[G: H]=3$ which is not normal. Justify that it is not normal.

Problem 3. (15 pts) Consider the ring of upper triangular matrices $T_{2}=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}\right\}$ and let $I=\left\{\left.\left[\begin{array}{ll}0 & x \\ 0 & y\end{array}\right] \right\rvert\, x, y \in \mathbb{Z}\right\}$.
(a) Verify that I is a (2-sided) ideal in T_{2}.
(b) Prove that T_{2} / I is isomorphic to \mathbb{Z}. Write explicitly a map $T_{2} / I \rightarrow \mathbb{Z}$ and verify that it is a ring isomorphism.

Problem 4. (15 pts) (a) Present polynomial $f(x)=x^{4}+x^{3}+x^{2}+x$ as a product of irreducible polynomials over \mathbb{Z}_{3}. Explain, why your factors are irreducible.
(b) Show that polynomial $f(x)=2 x^{3}+x^{2}+x+1$ is irreducible over \mathbb{Q}.

