M E T U
 Department of Mathematics

Group	BASIC LINEAR ALGEBRA Midterm II			List No.
Code Acad. Year Semester Coordinator	$\begin{aligned} & : \text { Math 260 } \\ & : \text { 2007-2008 } \\ & : \text { Fall } \\ & : \text { S.F, S.O, A.S. } \\ & : \text { November } 282007 \\ & : 17: 40 \\ & : 90 \text { minutes } \\ & \hline \end{aligned}$	Last Name Name Department Signature	Student No. Section	
Date Time Duration		4 QUESTIONS ON 4 PAGES TOTAL 100 POINTS		
${ }^{2}$	${ }^{3}{ }^{4}$			

Show your work! Partial credits will not be given for correct answers if they are not justified.

Question $1(12+6+6=24$ points)

The product of two (3×3)-matrices A and B is known to be $A B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$, and the adjoint matrix Adj(A) has determinant 4.
a) Find the determinants

$$
\operatorname{det}\left(A^{-1}\right)=
$$

$\operatorname{det} A=$
$\operatorname{det} B=$

Solution:
$(\operatorname{det} A)(\operatorname{det} B)=\operatorname{det}\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]=24$ and $\operatorname{Adj}(A)=(\operatorname{det} A) A^{-1}$

Since A is 3×3-matrix, $\operatorname{det}(\operatorname{Adj}(\mathrm{A}))=(\operatorname{det} \mathrm{A})^{3} \operatorname{det}\left(\mathrm{~A}^{-1}\right)=\frac{(\operatorname{det} \mathrm{A})^{3}}{\operatorname{det} \mathrm{~A}}=(\operatorname{det} \mathrm{A})^{2}=4$

There are two possibilities: either $\operatorname{det} A=2$, $\operatorname{det} B=12$, $\operatorname{det} A^{-1}=\frac{1}{2}$, or $\operatorname{det} A=-2$, $\operatorname{det} B=-12$, $\operatorname{det} A^{-1}=-\frac{1}{2}$.
b) Can we conclude that the row $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ is a linear combination of the rows of matrix B ? (Present complete and detailed arguments!)

Solution:

Yes. The rows of matrix B form a basis of \mathbb{R}^{3}, because $\operatorname{det} B \neq 0$ (a theorem). So, any row and in particular $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ is a linear combination of the rows of matrix B.
c) Can we conclude that matrices A and B are row-equivalent? (Present complete and detailed arguments !)

Solution:
Yes. A and B are both row equivalent to the unit matrix, because $\operatorname{det} A \neq 0, \operatorname{det} B \neq 0$ (a theorem). Thus, A and B are row equivalent to each other.

Consider the subspace $V \subset \mathbb{R}^{2 \times 3}$ formed by (2×3)-matrices A such that $A\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
a) Find a basis of V and determine the dimension of V.

Solution:
$\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{l}a+2 b \\ d+2 e\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \begin{aligned} & a+2 b=0 \\ & d+2 e=0\end{aligned}$

Four free variables b, c, e, f, so $\operatorname{dim} V=4$.

Fundamental solutions (basis of V): $\left[\begin{array}{ccc}-2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ -2 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
b) Extend your basis of V to a basis of $\mathbb{R}^{2 \times 3}$ by choosing additional vectors from the standard basis of $\mathbb{R}^{2 \times 3}$.

Solution:
$\left[\begin{array}{cccccccccc}-2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0\end{array}\right]$

So, additional vectors-matrices (corresponding to 5th and 8th columns) are $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$.

Question $3(8+8+8+8=32$ points)
Consider the vector space of polynomials, $\mathcal{P}_{2}=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}$, and its subset V formed by those $p(x) \in \mathcal{P}_{2}$ which satisfy the condition $p(1)+p^{\prime}(2)=0$.
a) Show that V is a subspace of \mathcal{P}_{2}.

Solution

$\begin{aligned} & p_{1}(1)+p_{1}^{\prime}(2)=0 \\ & p_{2}(1)+p_{2}^{\prime}(2)=0\end{aligned} \Rightarrow\left(p_{1}+p_{2}\right)(1)+\left(p_{1}+p_{2}\right)^{\prime}(2)=0$, so V is closed with respect to addition
$p(1)+p^{\prime}(2)=0 \Rightarrow c p(1)+c p^{\prime}(2)=c\left(p(1)+p^{\prime}(2)\right)=0$, so V is closed with respect to scalar multiplication. Therefore V is a subspace of \mathcal{P}_{2}.
b) Show that $\mathcal{B}=\left\{p_{1}, p_{2}\right\}$ and $\mathcal{C}=\left\{q_{1}, q_{2}\right\}$ are two bases of V, where $p_{1}=x^{2}-2 x-1, p_{2}=x^{2}-x-3, q_{1}=x-2$, $q_{2}=x^{2}-3 x+1$. Solution
if $p(x)=a x^{2}+b x+c$, then $p^{\prime}(x)=2 a x+b$ and $p(1)+p^{\prime}(2)=(a+b+c)+(4 a+b)=5 a+2 b+c=0$. The solution space V is two dimensional (one equation with three unknowns a, b, c). This equation is satisfied for $p_{1}, p_{2}, q_{1}, q_{2}$:

$$
\begin{aligned}
& 5-4-1=0 \\
& 5-2-3=0 \\
& 0+2-2=0 \\
& 5-6+1=0
\end{aligned} \text {, so } p_{1}, p_{2}, q_{1}, q_{2} \in V .
$$

p_{1}, p_{2} are not proportional and thus linearly independent. Then they form a basis of V (because V is two-dimensional). Similarly, q_{1}, q_{2} form a basis.
c) Determine the coordinates of p_{1}, p_{2} with respect to basis \mathcal{C}.

Solution

$$
x^{2}-2 x-1=c_{1}(x-2)+c_{2}\left(x^{2}-3 x+1\right) \Rightarrow c_{2}=1, c_{1}=1,
$$

coordinates $\left[p_{1}\right]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$x^{2}-x-3=c_{1}(x-2)+c_{2}\left(x^{2}-3 x+1\right) \Rightarrow c_{2}=1, c_{1}=2$,
coordinates $\left[p_{2}\right]_{\mathcal{C}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
d) Find the both transition matrices: $P_{\mathcal{B} \rightarrow \mathcal{C}}($ from \mathcal{B} to $\mathcal{C})$ and $P_{\mathcal{C} \rightarrow \mathcal{B}}($ from \mathcal{C} to $\mathcal{B})$. Write down how the coordinate columns $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{C}}$ are related to $P_{\mathcal{B} \rightarrow \mathcal{C}}$ and $P_{\mathcal{C} \rightarrow \mathcal{B}}$.

Solution
$P_{\mathcal{C} \rightarrow \mathcal{B}}=\left[p_{1}\right]_{\mathcal{C}}\left[p_{2}\right]_{\mathcal{C}}=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$
$P_{\mathcal{B} \rightarrow \mathcal{C}}=P_{\mathcal{C} \rightarrow \mathcal{B}}^{-1}=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & -2 \\ -1 & 1\end{array}\right]$

Question $4(8+8+8=24$ points)
a) Show that $p \mid q)=p(1) q(1)+p(2) q(2)+p(3) q(3)$ is an inner product in the space of polynomials $\mathcal{P}_{2}=\left\{a x^{2}+b x+c\right.$: $a, b, c \in \mathbb{R}\}$.

Solution:
Positivity: $(p \mid p)=(p(1))^{2}+(p(2))^{2}+(p(3))^{2} \geq 0$. If $(p \mid p)=0$, then $p(1)=p(2)=p(3)=0$, but polynomial p cannot have 3 roots (because its degree ≤ 2), except the case $p=0$ (constant zero polynomial).

Symmetry: $(p \mid q)=(q \mid p)$ (obvious).

Linearity:
$\left(c_{1} p_{1}+c_{2} p_{2} \mid q\right)=\left(c_{1} p_{1}(1)+c_{2} p_{2}(1)\right) q(1)+\left(c_{1} p_{1}(2)+c_{2} p_{2}(2)\right) q(1)+\left(c_{1} p_{1}(3)+c_{2} p_{2}(3)\right) q(1)=c_{1}\left(p_{1} \mid q\right)+c_{2}\left(p_{2} \mid q\right)$.
b) Determine the norms $\|1\|$ and $\|x\|$ with respect to this inner product.

Solution:
$\|p\|=\sqrt{(p \mid p)}=\sqrt{(p(1))^{2}+(p(2))^{2}+(p(3))^{2}}$
$||1||=\sqrt{1+1+1}=\sqrt{3}$
$\|x\|=\sqrt{1+4+9}=\sqrt{14}$
c) Determine $\cos (\phi)$, for angle ϕ between the vectors-polynomials 1 and x, with respect to the above inner product.

Solution:
$(1 \mid x)=1 \cdot 1+1 \cdot 2+1 \cdot 3=6$
$\cos (\phi)=\frac{(1 \mid x)}{\|1\| \cdot\|x\|}=\frac{6}{\sqrt{3} \sqrt{14}}=\frac{6}{\sqrt{42}}$

