M E T U Department of Mathematics

Group		List No.												
	Midterm II													
Code Acad. Year Semester Coordinator	: Math 260 : 2007-2008 : Fall r: S.F, S.O, A	.S.	Last Name Name Departmen Signature	: : t: :	Student No Section). : :								
Time Duration	: 17:40 : 90 minutes	0 2001		4 QUE T(ESTIONS ON 4 PAGES OTAL 100 POINTS	5								
1 2	3 4													

Show your work ! Partial credits will not be given for correct answers if they are not justified.

Question 1 (12+6+6=24 points)

The product of two (3×3) -matrices A and B is known to be $AB = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$, and the adjoint matrix Adj(A) has

determinant 4. a) Find the determinants $det(A^{-1}) =$ det A =det B =

Solution:

 $(\det A)(\det B) = \det \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} = 24 \text{ and } \operatorname{Adj}(A) = (\det A)A^{-1}$

Since A is 3×3 -matrix, $\det(\operatorname{Adj}(A)) = (\det A)^3 \det(A^{-1}) = \frac{(\det A)^3}{\det A} = (\det A)^2 = 4$

There are two possibilities: either det A = 2, det B = 12, det $A^{-1} = \frac{1}{2}$, or det A = -2, det B = -12, det $A^{-1} = -\frac{1}{2}$.

b) Can we conclude that the row $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ is a linear combination of the rows of matrix B? (Present complete and detailed arguments !)

Solution:

Yes. The rows of matrix B form a basis of \mathbb{R}^3 , because det $B \neq 0$ (a theorem). So, **any row** and in particular $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ is a linear combination of the rows of matrix B.

c) Can we conclude that matrices A and B are row-equivalent? (Present complete and detailed arguments !)

Solution:

Yes. A and B are both row equivalent to the unit matrix, because det $A \neq 0$, det $B \neq 0$ (a theorem). Thus, A and B are row equivalent to each other.

Question 2 (10+10=20 points)

Consider the subspace $V \subset \mathbb{R}^{2 \times 3}$ formed by (2×3) -matrices A such that $A \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. a) Find a basis of V and determine the dimension of V.

Solution:

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} a+2b \\ d+2e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{array}{c} a+2b=0 \\ d+2e=0 \end{array}$$

Four free variables b, c, e, f, so dim V = 4.

Euclamental solutions (basis of V):	-2	1	0]	0	0	1		0	0	0		0	0	0].
Fundamental solutions (basis of v).	0	0	0	,	0	0	0	,	-2	1	0	,	0	0	1].

b) Extend your basis of V to a basis of $\mathbb{R}^{2\times 3}$ by choosing additional vectors from the standard basis of $\mathbb{R}^{2\times 3}$.

Solution:

$\begin{bmatrix} -2 \end{bmatrix}$	0	0	0	1	0	0	0	0	0		0	0	0	0	1	2	0	0	0	0		1	0	0	0	0	1	0	0	0	0
1	0	0	0	0	1	0	0	0	0		1	0	0	0	0	1	0	0	0	0		0	1	0	0	0	0	1	0	0	0
0	1	0	0	0	0	1	0	0	0		0	1	0	0	0	0	1	0	0	0		0	0	1	0	0	0	0	0	1	0
0	0	-2	0	0	0	0	1	0	0	\rightarrow	0	0	0	0	0	0	0	1	2	0	\rightarrow	0	0	0	1	0	0	0	0	0	1
0	0	1	0	0	0	0	0	1	0		0	0	1	0	0	0	0	0	1	0		0	0	0	0	1	2	0	0	0	0
0	0	0	1	0	0	0	0	0	1		0	0	0	1	0	0	0	0	0	1		0	0	0	0	0	0	0	1	2	0

So, additional vectors-matrices (corresponding to 5th and 8th columns) are $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Question 3 (8+8+8+8=32 points)

Consider the vector space of polynomials, $\mathcal{P}_2 = \{ax^2 + bx + c | a, b, c \in \mathbb{R}\}$, and its subset V formed by those $p(x) \in \mathcal{P}_2$ which satisfy the condition p(1) + p'(2) = 0. a) Show that V is a subspace of \mathcal{P}_2 .

Solution

 $p_1(1) + p'_1(2) = 0$ $p_2(1) + p'_2(2) = 0 \Rightarrow (p_1 + p_2)(1) + (p_1 + p_2)'(2) = 0, \text{ so } V \text{ is closed with respect to addition}$ $p(1) + p'(2) = 0 \Rightarrow cp(1) + cp'(2) = c(p(1) + p'(2)) = 0, \text{ so } V \text{ is closed with respect to scalar multiplication. Therefore}$ $V \text{ is a subspace of } \mathcal{P}_2.$

b) Show that $\mathcal{B} = \{p_1, p_2\}$ and $\mathcal{C} = \{q_1, q_2\}$ are two bases of V, where $p_1 = x^2 - 2x - 1$, $p_2 = x^2 - x - 3$, $q_1 = x - 2$, $q_2 = x^2 - 3x + 1$. Solution if $p(x) = ax^2 + bx + c$, then p'(x) = 2ax + b and p(1) + p'(2) = (a + b + c) + (4a + b) = 5a + 2b + c = 0. The solution space V is two dimensional (one equation with three unknowns a, b, c). This equation is satisfied for p_1, p_2, q_1, q_2 : 5 - 4 - 1 = 05 - 2 - 3 = 00 + 2 - 2 = 0, so $p_1, p_2, q_1, q_2 \in V$.

$$5 - 6 + 1 = 0$$

 p_1, p_2 are not proportional and thus linearly independent. Then they form a basis of V (because V is two-dimensional). Similarly, q_1, q_2 form a basis.

c) Determine the coordinates of p_1 , p_2 with respect to basis C.

Solution

$$x^{2} - 2x - 1 = c_{1}(x - 2) + c_{2}(x^{2} - 3x + 1) \Rightarrow c_{2} = 1, c_{1} = 1,$$

coordinates
$$[p_1]_{\mathcal{C}} = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$x^{2} - x - 3 = c_{1}(x - 2) + c_{2}(x^{2} - 3x + 1) \Rightarrow c_{2} = 1, c_{1} = 2,$$

coordinates $[p_2]_{\mathcal{C}} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$

d) Find the both transition matrices: $P_{\mathcal{B}\to\mathcal{C}}$ (from \mathcal{B} to \mathcal{C}) and $P_{\mathcal{C}\to\mathcal{B}}$ (from \mathcal{C} to \mathcal{B}). Write down how the coordinate columns $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{C}}$ are related to $P_{\mathcal{B}\to\mathcal{C}}$ and $P_{\mathcal{C}\to\mathcal{B}}$.

Solution

$$P_{\mathcal{C}\to\mathcal{B}} = [p_1]_{\mathcal{C}} [p_2]_{\mathcal{C}} = \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix}$$

 $P_{\mathcal{B}\to\mathcal{C}} = P_{\mathcal{C}\to\mathcal{B}}^{-1} = \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -2\\ -1 & 1 \end{bmatrix}$

Question 4 (8+8+8=24 points)

a) Show that (p|q) = p(1)q(1) + p(2)q(2) + p(3)q(3) is an inner product in the space of polynomials $\mathcal{P}_2 = \{ax^2 + bx + c : a, b, c \in \mathbb{R}\}.$

Solution:

Positivity: $(p|p) = (p(1))^2 + (p(2))^2 + (p(3))^2 \ge 0$. If (p|p) = 0, then p(1) = p(2) = p(3) = 0, but polynomial p cannot have 3 roots (because its degree ≤ 2), except the case p = 0 (constant zero polynomial).

Symmetry: (p|q) = (q|p) (obvious).

Linearity:

 $(c_1p_1 + c_2p_2|q) = (c_1p_1(1) + c_2p_2(1))q(1) + (c_1p_1(2) + c_2p_2(2))q(1) + (c_1p_1(3) + c_2p_2(3))q(1) = c_1(p_1|q) + c_2(p_2|q).$

b) Determine the norms ||1|| and ||x|| with respect to this inner product.

Solution:
$$\begin{split} ||p|| &= \sqrt{(p|p)} = \sqrt{(p(1))^2 + (p(2))^2 + (p(3))^2} \\ ||1|| &= \sqrt{1+1+1} = \sqrt{3} \\ ||x|| &= \sqrt{1+4+9} = \sqrt{14} \end{split}$$

c) Determine $\cos(\phi)$, for angle ϕ between the vectors-polynomials 1 and x, with respect to the above inner product.

Solution: $(1|x) = 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 = 6$

 $\cos(\phi) = \frac{(1|x)}{||1||\cdot||x||} = \frac{6}{\sqrt{3}\sqrt{14}} = \frac{6}{\sqrt{42}}$