Midterm 2 May 7 (60 points in 6 problems)

Name and the student number:

Problem 1. (14pts) (a) State Euler's formula for graphs on surfaces. Under which condition on the graph this formula is satisfied?
(b) Give a definition of simplicial complex.
(c) What is a chain complex ?
(d) What are the homology groups of a chain complex?
(e) How the boundary map of a simplicial chain complex is defined?
(f) What are the homology groups of surfaces F_{g} and N_{k} ?
(g) Which Δ-triangulation of a surface is a simplicial triangulation?

Problem 2. (5pts) For the link diagram sketched below (a) find the topological type of its span,
(b) sketch a graph being a deformational retract of this span.

Problem 3. (10pts) Consider surface F glued from a hexagon according to the word abacb ${ }^{-1} c^{-1}$. Determine if the following curves on the hexagonal model are one-sided or two-sided.
(a) Line segment connecting the midpoints of the sides " a ".
(b) Line segment connecting the midpoints of the sides "b".
(c) The diagonal separating sides ab from $a c b^{-1} c^{-1}$.
(d) The side a.
(e) The side b.

Problem 4. (4pts) Consider a graph with vertices A, B, C and edges $[A B],[B C]$ i and $[A C]$ as a simplicial complex, C.
(a) For $x=2[A B]-3[B C]+[A C]$ find $\partial_{1} x$.
(b) Give examples of a cycle in $C_{1}(C)$ and a boundary in $C_{0}(C)$.

Problem 5. (12pts) Consider surface F obtained from a hexagon $A B C D E F$ by gluing side $A B$ to $D E$ and $B C$ to FE. Divide the hexagon into triangles by diagonals $A C, C E$, and $C F$.
(a) Is it a simplicial triangulation, or Δ-triangulation of F ? (Explain.)
(b) What are the generators of the chain groups C_{0}, C_{1} and C_{2} ?
(c) Find the boundary of the chain $2[A B C]-[C D E]$.
(d) Calculate the homology group $H_{2}(F)$ using this chain complex.

Problem 6. (15pts) Consider a polygonal cell complex X, whose 2-cells are represented by words abcb-1, acda ${ }^{-1}$, bcb.
(a) Describe its chain groups $C_{i}, i=0,1,2$, and the boundary maps $\partial_{2}: C_{2} \rightarrow C_{1}$ and $\partial_{1}: C_{1} \rightarrow C_{0}$.
(b) Find the homology groups $H_{i}(X), i=0,1,2$.

