Midterm 2 May 7
 Solutions

Problem 1. (14pts) (a) State Euler's formula for graphs on surfaces. Under which condition on the graph this formula is satisfied?

Answer: $v-e+r=\chi(F)$ for a graph with v vertices, e edges and r regions on a surface F. It is true provided all the regions are simply connected (or equivalently, homeomorphic to a disc).
(b) Give a definition of simplicial complex.

Answer: A simplicial complex is a set S of simplices such that
(1) for any simplex $\sigma \in S$ any face of σ is also a simplex from S;
(2) two simplices from S may intersect only along their common face.
(c) What is a chain complex ?

Answer: A chain complex, C, is a sequence of abelian groups $C_{i}, 0 \leq i \leq n$, related by homomorphisms $\partial_{i}: C_{i} \rightarrow C_{i-1}$, called differentials or boundary maps

$$
C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} C_{0}
$$

so that the products $\partial_{i-1} \circ \partial_{i}$ of consecutive differentials vanish.
(d) What are the homology groups of a chain complex ?

Answer: $H_{i}(C)=Z_{i} / B_{i}$, where $Z_{i}=\operatorname{ker} \partial_{i}$ is group of cycles and $B_{i}=\Im\left(\partial_{i+1}\right)$ is group of boundaries.
(e) How the boundary map of a simplicial chain complex is defined?

Answer: If $\sigma \in S$ is an k-dimensional simplex in a simplicial complex and $[\sigma]$ the corresponding generator of the chain group C_{k} of S, then

$$
\partial[\sigma]=\sum_{i=0}^{k}(-1)^{i}\left[\sigma_{i}\right],
$$

where σ_{i} is the facet of σ obtaining by dropping its i-th vertex.
(f) What are the homology groups of surfaces F_{g} and N_{k} ?

Answer: $H_{0}\left(F_{g}\right)=H_{0}\left(N_{k}\right)=\mathbb{Z}$ (as for any path-connected space)
$H_{1}\left(F_{g}\right)=\mathbb{Z}^{2 g}, H_{1}\left(N_{k}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}^{k-1}, H_{2}\left(F_{g}\right)=\mathbb{Z}, H_{2}\left(N_{k}\right)=0$.
(g) Which Δ-triangulation of a surface is a simplicial triangulation?

Answer: $A \Delta$-triangulation of a surface is a simplicial if there is no
(1) loop-edges (i.e., the endpoints of an edge cannot coincide),
(2) multiple edges (i.e., there is no edges having the same endpoints),
(3) triangles sharing with another triangle more than one common edge.

Problem 2. (5pts) For the link diagram sketched below (a) find the topological type of its span,
(b) sketch a graph being a deformation retract of this span.

Answer:
Problem 3. (10pts) Consider surface F glued from a hexagon according to the word abacb ${ }^{-1} c^{-1}$. Determine if the following curves on the hexagonal model are one-sided or two-sided.
(a) Line segment connecting the midpoints of the sides " a ".

Answer:
(b) Line segment connecting the midpoints of the sides" "b".

Answer:
(c) The diagonal separating sides ab from $a c b^{-1} c^{-1}$.

Answer:
(d) The side a.

Answer:
(e) The side b.

Problem 4. (4pts) Consider a graph with vertices A, B, C and edges $[A B],[B C]$ i and $[A C]$ as a simplicial complex, C.
(a) For $x=2[A B]-3[B C]+[A C]$ find $\partial_{1} x$.
(b) Give examples of a cycle in $C_{1}(C)$ and a boundary in $C_{0}(C)$.

Problem 5. (12pts) Consider surface F obtained from a hexagon $A B C D E F$ by gluing side $A B$ to $D E$ and $B C$ to FE. Divide the hexagon into triangles by diagonals $A C, C E$, and $C F$.
(a) Is it a simplicial triangulation, or Δ-triangulation of F ? (Explain.)

Answer:
(b) What are the generators of the chain groups C_{0}, C_{1} and C_{2} ?
(c) Find the boundary of the chain $2[A B C]-[C D E]$.
(d) Calculate the homology group $H_{2}(F)$ using this chain complex.

Problem 6. (15pts) Consider a polygonal cell complex X, whose 2-cells are represented by words abcb-1, acda ${ }^{-1}$, bcb.
(a) Describe its chain groups $C_{i}, i=0,1,2$, and the boundary maps $\partial_{2}: C_{2} \rightarrow C_{1}$ and $\partial_{1}: C_{1} \rightarrow C_{0}$.
(b) Find the homology groups $H_{i}(X), i=0,1,2$.

