1	
2	
3	
4	
5	
Σ	

Problem 1. (10 pts) (a) Find equations f_{t} of the pencil of conics, which contains $f_{0}=x y$ and $f_{1}=(x-1)^{2}+(y-1)^{2}-1$. Sketch several conics A_{t} of this pencil making clear that their union is the whole plane. In particular, find the equation and sketch the conic f_{t} passing through the point $(-1,1)$.
(b) Which of the conics f_{t} are singular ? Find equations and sketch.
(c) Find the intersection 0-cycle $A_{0} \cdot A_{1}$.

Problem 2. (10 pts) A sextic A has 5 nodes (non-degenerated double points) and 2 cusps. What is the genus of the normalization, \tilde{A}, of A.

Problem 3. (10 pts) A rational function $f: \Sigma \rightarrow P^{1}$ has degree 4. Its branching locus consists of double ramification points P_{1}, P_{2}, P_{3}, and a triple ramifications point Q.
(a) Find the ramification divisor of f.
(b) Find the genus of Σ.

Problem 4. (10 pts) Describe normalization by blowing up of the singularity $x^{7}=y^{3}$. Sketch the curve on each of the steps of resolution.

Problem 5. (10 pts) Consider some points $P_{k}, k=1,2,3$, on a Riemann surface A. Describe the functions f which belong to $L(D)$ and the 1 -forms ω which belong to $K^{1}(D)$ for $D=2 P_{1}+3 P_{2}-P_{3}$ (in terms of the multiplicities of the poles and zeros at points P_{k}).

Problem 6. (20 pts) Let P denote a point on a curve A of genus $g=4$. Suppose that the canonical class divisors on A contains a multiple of some point, $m P, m \geq 0$.
(a) Justify that $m=6$.
(b) Write down the Riemann-Roch theorem applying it to the divisors $n P, n=1,2,3, \ldots$.
(c) Using the results of (a), find all possible sequences $\ell(P), \ell(2 P), \ell(3 P), \ell(4 P), \ell(5 P), \ell(6 P), \ldots$.
(d) Find the corresponding sequences $i(P), i(2 P), i(3 P), \ldots$ for each of the sequence in (b). (Recall that $i(D)=\operatorname{dim} K^{1}(D)$.)

