Name:

Student number:
METU MATH 476, Final, Part II (Take-home)
To return on Friday, June 8, 2012, before 15:00
Instructor: S.Finashin

1	
2	
3	
Σ	

Problem 1. (5 pts) Justify that $h=(x-1)^{4}+(y-1)^{4}-1$ belongs to the ideal $\left(f_{0}, f_{1}\right)$, where $f_{0}=x y$ and $f_{1}=(x-1)^{2}+(y-1)^{2}-1$, by applying the fundamental Noether's theorem.

Problem 2. (5 pts) Two quintics A and B have both a cusp at a point P. The other intersection points, P_{1}, \ldots, P_{n}, are non-singular. What can be the values of n ?

Problem 3. (5 pts) Consider points $P_{ \pm}=(-1, \pm \sqrt{3})$ on the curve $A=\left\{y^{2}=x^{3}-4 x\right\}$. Find a family of functions $f \in L(D)$ (including not only constants), where $D=P_{+}+P_{-}$. Conclude that $\ell(D) \geq 2$.

Problem 4. (10 pts) Let A be the normalization of a quartic curve with one cuspidal singularity. Suppose that the canonical class divisors on A contains a multiple of some point, $m P$. (a) Find m.
(b) Find all possible sequences $\ell(P), \ell(2 P), \ell(3 P), \ell(4 P), \ell(5 P), \ell(6 P), \ldots$.
(c) Show that A is hyperelliptic by considering the projection $f: A \rightarrow P^{1}$ from the cusp of A.
(d) How many branch points of f are there ?
(e) Does f have a branch point at the cusp ?

