Name:

1	
2	
3	
4	
5	
Σ	

Problem 1. (10 pts) (a) Find the equation of conic $x^{2}+x y-z^{2}=0$ in the three standard affine charts.
(b) Find the Newton polygon of the quartic with the affine equation $x^{2}+y^{2}+x y^{3}=0$.
(c) Which kind of singularities are there at the vertices $[0: 0: 1],[0: 1: 0]$ and $[1: 0: 0]$?

Problem 2. ($5 \mathbf{p t s}$) Determine for which values of a (real or complex) the cubic $x^{3}+y^{3}+z^{3}-$ $a x y z=0$ is singular. Find a real singular point for some real value of a.

Problem 3. (5 pts) Find the polar map for the conic $C=\left\{x^{2}+y^{2}+2 x z=0\right\}$, and the dual curve for C.

Problem 4. (10 pts) (a) Find the inflection points of cubic $A=\left\{x^{3}+y^{3}+z^{3}=0\right\}$ using its Hessian.
(b) Find the tangent lines to A at the inflection points.
(c) Find the tangent lines to A passing through $[1: 0: 0]$.

Problem 5. (10 pts) (a) Find the values of $[t: s] \in P^{1}$, for which the binary quadric $s(x+$ $y)^{2}+t\left(x^{2}+y^{2}\right)$ is singular.
(b) Consider a pencil of binary cubics $h_{[t: s]}(x, y)=s f(x, y)+t g(x, y)$ (here f and g are homogeneous polynomials of degree 3). How many singular binary cubics are there in this pencil if the pencil is generic? (Hint: in the space of binary cubics relate the pencil and the discriminant.)

