Midterm II

(take-home)

Problem 1. Suppose that for a smooth mapping $f: X \to Y$, $d_x f = 0$ at all points $x \in X$. Prove that f is constant on the connected components of X.

Problem 2. Prove that any embedded circle in \mathbb{R}^n , $n \ge 5$, bounds an embedded disc.

Problem 3. Assume that $f: X \to Y$ is a submersion. Prove that any vector field, W, on Y can be lifted to X, that is to say, there exists a vector field V on X, such that $d_x(V(x)) = W(f(x)), \forall x \in X$.

Problem 4. Assume that $s: X \to E$ is a continuous section of a smooth Euclidian vector bundle $p: E \to X$. Prove that for any $\epsilon > 0$ there exists a smooth ϵ -approximation, $s': X \to E$, of s.