Degrees of maps, transversal intersections and applications

Problem 1. Construct a homotopically non-trivial map $f: X \rightarrow X$ of degree 0 if X is
(1) a closed oriented surface F_{g} of genus $g>0$;
(2) $S^{n} \times S^{n}$.
(3) Explain why such an example does not exist for $X=S^{n}$.
(4) (advanced) Are there such examples for $X=\mathbb{C P}^{2}$?

Problem 2. Consider a smooth map, $f: X \rightarrow Y_{1} \times Y_{2}, f(x)=\left(f_{1}(x), f_{2}(x)\right)$. Let $y_{i} \in Y_{i}$ be regular values for f_{i} and $M_{i}=f_{i}^{-1}\left(y_{i}\right), i=1,2$. Assuming that $\operatorname{dim} X=\operatorname{dim}\left(Y_{1} \times Y_{2}\right)$ prove that $\operatorname{deg}(f)=M_{1} \circ M_{2}$.

Problem 3. (1) Given a smooth map $f: X^{n+m} \rightarrow S^{n}$ and a regular value $s \in S^{n}$, prove that $M=f^{-1}(s)$ has a trivial normal bundle.
(2) Prove the converse: if $M \subset X$ is a codimension n submanifold having a trivial normal bundle, then there exists a smooth map $f: X \rightarrow S^{n}$ such that $M=f^{-1}(s)$ for some regular value s.
(3) Prove that for any map $f: \mathbb{C P}{ }^{2} \rightarrow \mathbb{C P}^{1}$ the pull-back $f^{-1}(x)$ of a regular value $x \in \mathbb{C P}^{1}$ is a null-homologous submanifold.

Problem 4. Consider a closed connected surface $F \subset S^{3}$ and assume that a vector field V in S^{3} has no singular points and is transverse to F. Show that F is homeomorphic to a torus.

Problem 5. Consider polynomials $f: \mathbb{C}^{p} \rightarrow \mathbb{C}$ and $g: \mathbb{C}^{q} \rightarrow \mathbb{C}$ having isolated singularities at 0 . Define $h: \mathbb{C}^{p+q} \rightarrow \mathbb{C}$ as $h(x, y)=f(x)+g(y)$. Prove that h has also an isolated singularity at 0 and the Milnor number is additive, that is $\mu_{h}(0)=\mu_{f}(0)+\mu_{g}(0)$.

Problem 6. Prove that the following maps f have degree 0.
(1) $f: S^{3} \rightarrow S^{1} \times S^{2}$ and more generally $f: S^{p+q} \rightarrow S^{p} \times S^{q}, p, q>0$;
(2) $f: S^{n} \times S^{m} \rightarrow S^{p} \times S^{q}$, if $p, q, n, m>0, p+q=n+m,\{p, q\} \neq\{n, m\}$;
(3) $f: X \rightarrow Y$ which can be factorized through a sphere, $X \rightarrow S^{n} \rightarrow Y$, of dimension $n \neq \operatorname{dim} X=\operatorname{dim} Y$;
(4) $f: X \rightarrow T^{n}$, where X is a simply connected n-manifold and T^{n} is n-torus.

Problem 7. Assume that a map between oriented surfaces, $f: F_{1} \rightarrow F_{2}$ has nonzero degree. Prove that $g\left(F_{1}\right) \geqslant g\left(F_{2}\right)$.

Problem 8. Prove that any map $f: \mathbb{C P}^{1} \times \mathbb{C P}^{1} \rightarrow \mathbb{C} P^{2}$ has even degree.

