Final

(take-home)

DEGREES OF MAPS, TRANSVERSAL INTERSECTIONS AND APPLICATIONS

Problem 1. Construct a homotopically non-trivial map $f: X \to X$ of degree 0 if X is

- (1) a closed oriented surface F_q of genus g > 0;
- (2) $S^n \times S^n$.
- (3) Explain why such an example does not exist for $X = S^n$.
- (4) (advanced) Are there such examples for $X = \mathbb{CP}^2$?

Problem 2. Consider a smooth map, $f: X \to Y_1 \times Y_2$, $f(x) = (f_1(x), f_2(x))$. Let $y_i \in Y_i$ be regular values for f_i and $M_i = f_i^{-1}(y_i)$, i = 1, 2. Assuming that $\dim X = \dim(Y_1 \times Y_2)$ prove that $\deg(f) = M_1 \circ M_2$.

Problem 3. (1) Given a smooth map $f: X^{n+m} \to S^n$ and a regular value $s \in S^n$, prove that $M = f^{-1}(s)$ has a trivial normal bundle.

(2) Prove the converse: if $M \subset X$ is a codimension n submanifold having a trivial normal bundle, then there exists a smooth map $f: X \to S^n$ such that $M = f^{-1}(s)$ for some regular value s.

(3) Prove that for any map $f: \mathbb{C}P^2 \to \mathbb{C}P^1$ the pull-back $f^{-1}(x)$ of a regular value $x \in \mathbb{C}P^1$ is a null-homologous submanifold.

Problem 4. Consider a closed connected surface $F \subset S^3$ and assume that a vector field V in S^3 has no singular points and is transverse to F. Show that F is homeomorphic to a torus.

Problem 5. Consider polynomials $f: \mathbb{C}^p \to \mathbb{C}$ and $g: \mathbb{C}^q \to \mathbb{C}$ having isolated singularities at 0. Define $h: \mathbb{C}^{p+q} \to \mathbb{C}$ as h(x, y) = f(x) + g(y). Prove that h has also an isolated singularity at 0 and the Milnor number is additive, that is $\mu_h(0) = \mu_f(0) + \mu_q(0)$.

Problem 6. Prove that the following maps f have degree 0.

- (1) $f: S^3 \to S^1 \times S^2$ and more generally $f: S^{p+q} \to S^p \times S^q$, p, q > 0;
- (2) $f: S^n \times S^m \to S^p \times S^q$, if $p, q, n, m > 0, p+q = n+m, \{p,q\} \neq \{n,m\}$;
- (3) $f: X \to Y$ which can be factorized through a sphere, $X \to S^n \to Y$, of dimension $n \neq \dim X = \dim Y$;
- (4) $f: X \to T^n$, where X is a simply connected n-manifold and T^n is n-torus.

Problem 7. Assume that a map between oriented surfaces, $f: F_1 \to F_2$ has nonzero degree. Prove that $g(F_1) \ge g(F_2)$.

Problem 8. Prove that any map $f : \mathbb{C}P^1 \times \mathbb{C}P^1 \to \mathbb{C}P^2$ has even degree.

(Problems 6(3-4) 7 and 8 require some knowledge of homology)