MATH 541 LECTURE 1

ATLASES AND DIFFERENTIAL STRUCTURES ON A MANIFOLD

A manifold of dimension n is a topological space, M, which looks locally like
an euclidian space R™, that is, Vo € M there is a neighborhood of z, U C M,
homeomorphic to R™. The homeomorphism ¢: U — R" is called a chart or a
coordinate system around x. To avoid too exotic examples, it is required also that
a manifold 1) Hausdorff, 2) has a countable basis of topology.

Exercises.

(1) Construct a non-Hausdorff locally euclidian space.
(2) Give an example of locally euclidian space with a non-countable basis.
(3) The same as in (2), but the space should be connected.

A differential structure in M allows to speak about differentiability of functions
on M. Such a structure can be introduced if we fix an atlas of charts which agree
with each other.

Recall that the class C* is formed by those functions which are k times continu-
ously differentiable. The class C'*° is formed by infinitely many times differentiable
functions, the latter functions will be called smooth. C® means analyticity, C°
means just continuity.

Two charts, ¢;: U; — R™, are said to be C*-compatible if the coordinates in
these charts are related as C*-functions in the common part of the domains. That
is to say that the coordinate change map ¢;2 = ¢ © ¢1_1 is a diffeomorphism of
class C* between the domains V; = ¢;(U; NUs) C R™ The charts are automatically
C*-compatible if their domains U; are disjoint.

A set of charts, A = {¢;: U; — R"},cq, is called an atlas of class CF, if the
domains U; cover M, and the charts of A are pairwise C*-compatible.

Remarks.

(1) An atlas of class C* belongs also to all rougher classes, C™, m < k (m, k
are from the ordered set 0,1,2,...,00,a).

(2) Using a similar approach with complex charts ¢: U — C", one can define
complex manifolds. However, for complex functions differentiable=analytic
(holomorphic), so there is no notion of class C¥. Complex manifolds can be
only analytic !

Examples.

(1) R™ has an atlas of class C* with a unique chart, defined by the identity map
id: R™ — R™.

(2) sphere S™ has an atlas of class C'® consisting of a pair of charts, each of
which is a stereographical progection, S™ \ {x} — R".
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(3) Projective space RP™ has a C%-atlas with n charts, ¢;: U; — R"™, ¢;([zg :
Zo

i xy]) = (52,...,22), where U; C RP" is the complement of the hyper-
plane z; = 0 (3* is omitted in the right hand side).

Assume that A is a C*-atlas fixed for a manifold M. A function f: M — R
is called differentiable of class C* (with respect to A) if its representation, f o
qﬁ;l: R™ — R in any chart, ¢;: U; — R", of A is differential of class C*. Similarly
amap f: My — My between two differential manifolds is differentiable of class C*,
if in any charts it is defined by differentiable functions. More precisely, for any
charts ¢: U — R™ of A; and ¥: V — R™ of Ay the composition 1) o f o ¢! is
differentiable of class C* in the domain where this composition is defined (that is
in 6(U N F1(V))).

The above map f is called a diffeomorphism of class C* if it is a homeomorphism
and f together with f~! belong to the class C*.

Two C*-atlases A;, Ay are said to be C*-equivalent if their charts are pairwise
C*-compatible. Note that this is the same as to say that the union 4; U A, is again
a CF-atlas.

Exercises.

(1) Check that the above relation is really equivalence.

(2) Show that every C*-equivalence class or atlases contains a unique maximal
atlas (the latter is called sometimes the differential structure on a manifold
M.

(3) Show that a pair of atlases A;, i = 1,2, in M are C*-equivalent if and only
if the identity map is a C*-diffeomorphism (M, A1) — (M, As).

(4) Show that for the above equivalent C*-atlases, the sets, C¥(M, A;), of dif-
ferentiable functions coincide. Show the converse.

RAISING OF THE DIFFERENTIABILITY CLASS OF A MANIFOLD

Theorem. For any C*-atlas A, 0 < n < 0o, on a manifold M there exists a
C*®-atlas A" on M, which is C*-compatible with A.

If A" is any other such a C*-atlas on M, then it defines essentially the same
(C°-diffeomorphic) differential structure on M.

This result shows that there is no specific difference in the topology of manifolds
of different classes of differentiability C*, 1 < n < oo (existence of C'-atlas implies
existence and essentially uniqueness of C'*°-atlas). That is why we will be dealing
in what follows only with smooth (C'°) manifolds.

Remark. On the contrary, topological manifolds are in general not smoothable, and
smooth manifolds cannot be made analytic. So, we will exclude classes C° and C¢
from the further considerations.

DIFFERENT BUT DIFFEOMORPHIC DIFFERENTIAL STRUCTURES

Example. Any homeomorphism f: R — R gives a chart and thus defines a certain
smooth structure in R. It differs from the standard one, unless f is a diffeomor-
phism.

For example, consider an atlas A; = {z3} formed by a uniques chart R — R,
x +— 23. It is not compatible with the standard chart in R, the identity map x +— z,
and thus A; is not compatible with the standard atlas Ay = {x}.



Exercise. (1) Show that the algebra of smooth functions C*(R, A;) with respect to
the atlas Ay is a subalgebra of the usual algebra C*(R, Ag) of smooth functions on
R.

(2) Show that line R with the differential structures defined by Ay is diffeomorphic
to the standard R.

Remark. We conclude that Ay and A; define distinct differential structures on
R, which are however equivalent up to a diffeomorphism. Such a distinction is
not very crucial from the point of view of differential topology. It is much more
essential to understand if the differential structures on a manifold are equivalent
up to diffeomorphis.

For example, it turns out that any manifold of dimension < 3 has essentially
(that is up to a diffeomorphism) unique differential structure. Beginning from the
dimension 4 it is no longer true. On one hand, manifolds may have no smooth
structure at all. On the other hand, there may be many such structures, essentially
non-equivalent.

This phenomenon was discovered by J.Milnor in 1950s, who constructed famous
27 “exotic” 7-sphere (that is essentially non-equivalent differential structures on

S7).

IMPLICIT PRESENTATION OF DIFFERENTIAL MANIFOLDS

A subset L C M in a smooth manifold M of dimension m is called a (smooth)
l-dimensional submanifold of M if for any point « € M there exists a chart ¢: U —
R™ around z, such that ¢(U N L) = R!. This means that [ looks in this coodinate
system like a subspace R! of R™.

Note that the restriction of ¢ is a chart on L mapping V = U N L to R,

Exercise. Check that these charts agree. Define a differential structure on L.
Show that the inclusion L — M is a smooth map.

According to the Whitney embedding theorem, any smooth manifold can
be considered lying in RY (for sufficiently big N), that is diffeomorphic to a sub-
manifold of RV.

Submanifolds in a manifold M most often appear as the locus L = f~1(y), where
y € N is a regular value of some smooth mapping f: M - N m=dimM > n =
dim N. We recall that x € M is called a reqular point if the rank of the differential
d. f has maximal rank, n, and critical points otherwise. If f~!(y) contains a critical
point, then y € N is called critical value. Otherwise (if f~!(y) consists of regular
values or empty) y is called a regular value .

Ezample. Consider f: R™ — R", z = (z1,...,2m) [ = (f1,...,fn), and L =
f71(0). At a regular point the Jacobi matrix (9f;/0x;) has maximal rank n. By
the implicit function theorem, there exists a neighborhood U C R™ (say, a ball)
around z such that UN L has 1-1 projection to one of the coordinate (m —n)-planes
in R™, and the remaining n coordinates express as smooth functions of the chosen
(m — n) coordinates.

The projection to this (m — n) plane provides a chart LN U — R™~™.

Exercise. Prove that such charts are compatible. Prove that L is a smooth mani-
fold in case of arbitrary M.



Exercise. Prove that the smooth structure on S™ = {x% + -+ + 22 = 0} C R**!
defined implicitly coincides with the structure defined earlier by stereographic pro-
jection.

Homework. In the following examples determine if the set is a smooth manifold.
Find its dimension, the local coordinate systems.

(1)
3z +y— 2+ u? =a
T+y+2z+u =0
204+ 2y —32+2u =0

(2) The Lie groups SL(n,R) C R"*™ SL(n,C) C C"*™

(3) Lie groups O(n) and U(n).

(4) Stiefel manifold Sy, formed by all k-frames in R™.



