MATH 541 LECTURE I

Atlases and differential structures on a manifold

A manifold of dimension n is a topological space, M, which looks locally like an euclidian space \mathbb{R}^n , that is, $\forall x \in M$ there is a neighborhood of $x, U \subset M$, homeomorphic to \mathbb{R}^n . The homeomorphism $\phi: U \to \mathbb{R}^n$ is called *a chart* or *a coordinate system* around x. To avoid too exotic examples, it is required also that a manifold 1) Hausdorff, 2) has a countable basis of topology.

Exercises.

- (1) Construct a non-Hausdorff locally euclidian space.
- (2) Give an example of locally euclidian space with a non-countable basis.
- (3) The same as in (2), but the space should be connected.

A differential structure in M allows to speak about differentiability of functions on M. Such a structure can be introduced if we fix an atlas of charts which agree with each other.

Recall that the class C^k is formed by those functions which are k times continuously differentiable. The class C^{∞} is formed by infinitely many times differentiable functions, the latter functions will be called *smooth*. C^a means analyticity, C^0 means just continuity.

Two charts, $\phi_i: U_i \to \mathbb{R}^n$, are said to be C^k -compatible if the coordinates in these charts are related as C^k -functions in the common part of the domains. That is to say that the coordinate change map $\phi_{1,2} = \phi_2 \circ \phi_1^{-1}$ is a diffeomorphism of class C^k between the domains $V_i = \phi_i(U_1 \cap U_2) \subset \mathbb{R}^n$ The charts are automatically C^k -compatible if their domains U_i are disjoint.

A set of charts, $\mathcal{A} = \{\phi_i : U_i \to \mathbb{R}^n\}_{i \in I}$, is called *an atlas of class* C^k , if the domains U_i cover M, and the charts of \mathcal{A} are pairwise C^k -compatible.

Remarks.

- (1) An atlas of class C^k belongs also to all rougher classes, C^m , m < k (m, k) are from the ordered set $0, 1, 2, \ldots, \infty, a$.
- (2) Using a similar approach with complex charts $\phi: U \to \mathbb{C}^n$, one can define complex manifolds. However, for complex functions differentiable=analytic (holomorphic), so there is no notion of class C^k . Complex manifolds can be only analytic !

Examples.

- (1) \mathbb{R}^n has an atlas of class C^a with a unique chart, defined by the identity map id: $\mathbb{R}^n \to \mathbb{R}^n$.
- (2) sphere S^n has an atlas of class C^a consisting of a pair of charts, each of which is a stereographical projection, $S^n \setminus \{x\} \to \mathbb{R}^n$.

(3) Projective space $\mathbb{R}P^n$ has a C^a -atlas with n charts, $\phi_i \colon U_i \to \mathbb{R}^n$, $\phi_i([x_0 : \cdots : x_n]) = (\frac{x_0}{x_i}, \ldots, \frac{x_n}{x_i})$, where $U_i \subset \mathbb{R}P^n$ is the complement of the hyperplane $x_i = 0$ ($\frac{x_i}{x_i}$ is omitted in the right hand side).

Assume that \mathcal{A} is a C^k -atlas fixed for a manifold M. A function $f: M \to \mathbb{R}$ is called differentiable of class C^k (with respect to \mathcal{A}) if its representation, $f \circ \phi_i^{-1}: \mathbb{R}^n \to \mathbb{R}$ in any chart, $\phi_i: U_i \to \mathbb{R}^n$, of \mathcal{A} is differential of class C^k . Similarly a map $f: M_1 \to M_2$ between two differential manifolds is differentiable of class C^k , if in any charts it is defined by differentiable functions. More precisely, for any charts $\phi: U \to \mathbb{R}^n$ of \mathcal{A}_1 and $\psi: V \to \mathbb{R}^m$ of \mathcal{A}_2 the composition $\psi \circ f \circ \phi^{-1}$ is differentiable of class C^k in the domain where this composition is defined (that is in $\phi(U \cap f^{-1}(V))$).

The above map f is called a diffeomorphism of class C^k if it is a homeomorphism and f together with f^{-1} belong to the class C^k .

Two C^k -atlases \mathcal{A}_1 , \mathcal{A}_2 are said to be C^k -equivalent if their charts are pairwise C^k -compatible. Note that this is the same as to say that the union $\mathcal{A}_1 \cup \mathcal{A}_2$ is again a C^k -atlas.

Exercises.

- (1) Check that the above relation is really equivalence.
- (2) Show that every C^k-equivalence class or atlases contains a unique maximal atlas (the latter is called sometimes the differential structure on a manifold M.
- (3) Show that a pair of atlases \mathcal{A}_i , i = 1, 2, in M are C^k -equivalent if and only if the identity map is a C^k -diffeomorphism $(M, \mathcal{A}_1) \to (M, \mathcal{A}_2)$.
- (4) Show that for the above equivalent C^k -atlases, the sets, $\mathbb{C}^k(M, \mathcal{A}_i)$, of differentiable functions coincide. Show the converse.

RAISING OF THE DIFFERENTIABILITY CLASS OF A MANIFOLD

Theorem. For any C^k -atlas \mathcal{A} , $0 < n < \infty$, on a manifold M there exists a C^{∞} -atlas \mathcal{A}' on M, which is C^k -compatible with \mathcal{A} .

If \mathcal{A}'' is any other such a C^{∞} -atlas on M, then it defines essentially the same $(C^{\infty}$ -diffeomorphic) differential structure on M.

This result shows that there is no specific difference in the topology of manifolds of different classes of differentiability C^k , $1 \leq n \leq \infty$ (existence of C^1 -atlas implies existence and essentially uniqueness of C^{∞} -atlas). That is why we will be dealing in what follows only with smooth (C^{∞}) manifolds.

Remark. On the contrary, topological manifolds are in general not smoothable, and smooth manifolds cannot be made analytic. So, we will exclude classes C^0 and C^a from the further considerations.

DIFFERENT BUT DIFFEOMORPHIC DIFFERENTIAL STRUCTURES

Example. Any homeomorphism $f : \mathbb{R} \to \mathbb{R}$ gives a chart and thus defines a certain smooth structure in \mathbb{R} . It differs from the standard one, unless f is a diffeomorphism.

For example, consider an atlas $\mathcal{A}_1 = \{x^3\}$ formed by a uniques chart $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$. It is not compatible with the standard chart in \mathbb{R} , the identity map $x \mapsto x$, and thus \mathcal{A}_1 is not compatible with the standard atlas $\mathcal{A}_0 = \{x\}$.

Exercise. (1) Show that the algebra of smooth functions $C^k(\mathbb{R}, \mathcal{A}_1)$ with respect to the atlas \mathcal{A}_1 is a subalgebra of the usual algebra $C^k(\mathbb{R}, \mathcal{A}_0)$ of smooth functions on \mathbb{R} .

(2) Show that line \mathbb{R} with the differential structures defined by \mathcal{A}_1 is diffeomorphic to the standard \mathbb{R} .

Remark. We conclude that \mathcal{A}_0 and \mathcal{A}_1 define distinct differential structures on \mathbb{R} , which are however equivalent up to a diffeomorphism. Such a distinction is not very crucial from the point of view of differential topology. It is much more essential to understand if the differential structures on a manifold are equivalent up to diffeomorphis.

For example, it turns out that any manifold of dimension ≤ 3 has essentially (that is up to a diffeomorphism) unique differential structure. Beginning from the dimension 4 it is no longer true. On one hand, manifolds may have no smooth structure at all. On the other hand, there may be many such structures, essentially non-equivalent.

This phenomenon was discovered by J.Milnor in 1950s, who constructed famous 27 "exotic" 7-sphere (that is essentially non-equivalent differential structures on S^7).

Implicit presentation of differential manifolds

A subset $L \subset M$ in a smooth manifold M of dimension m is called a (smooth) l-dimensional submanifold of M if for any point $x \in M$ there exists a chart $\phi: U \to \mathbb{R}^m$ around x, such that $\phi(U \cap L) = \mathbb{R}^l$. This means that l looks in this coordinate system like a subspace \mathbb{R}^l of \mathbb{R}^m .

Note that the restriction of ϕ is a chart on L mapping $V = U \cap L$ to \mathbb{R}^l .

Exercise. Check that these charts agree. Define a differential structure on L. Show that the inclusion $L \to M$ is a smooth map.

According to the **Whitney embedding theorem**, any smooth manifold can be considered lying in \mathbb{R}^N (for sufficiently big N), that is diffeomorphic to a submanifold of \mathbb{R}^N .

Submanifolds in a manifold M most often appear as the locus $L = f^{-1}(y)$, where $y \in N$ is a regular value of some smooth mapping $f: M \to N$ $m = \dim M \ge n = \dim N$. We recall that $x \in M$ is called a regular point if the rank of the differential $d_x f$ has maximal rank, n, and critical points otherwise. If $f^{-1}(y)$ contains a critical point, then $y \in N$ is called critical value. Otherwise (if $f^{-1}(y)$ consists of regular values or empty) y is called a regular value .

Example. Consider $f: \mathbb{R}^m \to \mathbb{R}^n$, $x = (x_1, \ldots, x_m)$ $f = (f_1, \ldots, f_n)$, and $L = f^{-1}(0)$. At a regular point the Jacobi matrix $(\partial f_i / \partial x_j)$ has maximal rank n. By the implicit function theorem, there exists a neighborhood $U \subset \mathbb{R}^m$ (say, a ball) around x such that $U \cap L$ has 1-1 projection to one of the coordinate (m-n)-planes in \mathbb{R}^m , and the remaining n coordinates express as smooth functions of the chosen (m-n) coordinates.

The projection to this (m-n) plane provides a chart $L \cap U \to \mathbb{R}^{m-n}$.

Exercise. Prove that such charts are compatible. Prove that L is a smooth manifold in case of arbitrary M.

Exercise. Prove that the smooth structure on $S^n = \{x_0^2 + \cdots + x_n^2 = 0\} \subset \mathbb{R}^{n+1}$ defined implicitly coincides with the structure defined earlier by stereographic projection.

Homework. In the following examples determine if the set is a smooth manifold. Find its dimension, the local coordinate systems.

(1)

$$\begin{cases} 3x + y - z + u^2 &= a \\ x + y + 2z + u &= 0 \\ 2x + 2y - 3z + 2u &= 0 \end{cases}$$

- (2) The Lie groups $SL(n,\mathbb{R}) \subset \mathbb{R}^{n \times n} SL(n,\mathbb{C}) \subset \mathbb{C}^{n \times n}$
- (3) Lie groups O(n) and U(n).
- (4) Stiefel manifold $S_{n,k}$ formed by all k-frames in \mathbb{R}^n .