
MATH 541 LECTURE I

Atlases and differential structures on a manifold

A manifold of dimension n is a topological space, M , which looks locally like
an euclidian space Rn, that is, ∀x ∈ M there is a neighborhood of x, U ⊂ M ,
homeomorphic to Rn. The homeomorphism φ : U → Rn is called a chart or a
coordinate system around x. To avoid too exotic examples, it is required also that
a manifold 1) Hausdorff, 2) has a countable basis of topology.

Exercises.

(1) Construct a non-Hausdorff locally euclidian space.
(2) Give an example of locally euclidian space with a non-countable basis.
(3) The same as in (2), but the space should be connected.

A differential structure in M allows to speak about differentiability of functions
on M . Such a structure can be introduced if we fix an atlas of charts which agree
with each other.

Recall that the class Ck is formed by those functions which are k times continu-
ously differentiable. The class C∞ is formed by infinitely many times differentiable
functions, the latter functions will be called smooth. Ca means analyticity, C0

means just continuity.
Two charts, φi : Ui → Rn, are said to be Ck-compatible if the coordinates in

these charts are related as Ck-functions in the common part of the domains. That
is to say that the coordinate change map φ1,2 = φ2 ◦ φ−1

1 is a diffeomorphism of
class Ck between the domains Vi = φi(U1 ∩U2) ⊂ Rn The charts are automatically
Ck-compatible if their domains Ui are disjoint.

A set of charts, A = {φi : Ui → Rn}i∈I , is called an atlas of class Ck, if the
domains Ui cover M , and the charts of A are pairwise Ck-compatible.

Remarks.

(1) An atlas of class Ck belongs also to all rougher classes, Cm, m < k (m, k
are from the ordered set 0, 1, 2, . . . ,∞, a).

(2) Using a similar approach with complex charts φ : U → Cn, one can define
complex manifolds. However, for complex functions differentiable=analytic
(holomorphic), so there is no notion of class Ck. Complex manifolds can be
only analytic !

Examples.

(1) Rn has an atlas of class Ca with a unique chart, defined by the identity map
id: Rn → Rn.

(2) sphere Sn has an atlas of class Ca consisting of a pair of charts, each of
which is a stereographical progection, Sn r {x} → Rn.
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(3) Projective space RPn has a Ca-atlas with n charts, φi : Ui → Rn, φi([x0 :
· · · : xn]) = (x0

xi
, . . . , xn

xi
), where Ui ⊂ RPn is the complement of the hyper-

plane xi = 0 (xi

xi
is omitted in the right hand side).

Assume that A is a Ck-atlas fixed for a manifold M . A function f : M → R
is called differentiable of class Ck (with respect to A) if its representation, f ◦
φ−1

i : Rn → R in any chart, φi : Ui → Rn, of A is differential of class Ck. Similarly
a map f : M1 → M2 between two differential manifolds is differentiable of class Ck,
if in any charts it is defined by differentiable functions. More precisely, for any
charts φ : U → Rn of A1 and ψ : V → Rm of A2 the composition ψ ◦ f ◦ φ−1 is
differentiable of class Ck in the domain where this composition is defined (that is
in φ(U ∩ f−1(V ))).

The above map f is called a diffeomorphism of class Ck if it is a homeomorphism
and f together with f−1 belong to the class Ck.

Two Ck-atlases A1, A2 are said to be Ck-equivalent if their charts are pairwise
Ck-compatible. Note that this is the same as to say that the union A1∪A2 is again
a Ck-atlas.

Exercises.
(1) Check that the above relation is really equivalence.
(2) Show that every Ck-equivalence class or atlases contains a unique maximal

atlas (the latter is called sometimes the differential structure on a manifold
M .

(3) Show that a pair of atlases Ai, i = 1, 2, in M are Ck-equivalent if and only
if the identity map is a Ck-diffeomorphism (M,A1) → (M,A2).

(4) Show that for the above equivalent Ck-atlases, the sets, Ck(M,Ai), of dif-
ferentiable functions coincide. Show the converse.

Raising of the differentiability class of a manifold

Theorem. For any Ck-atlas A, 0 < n < ∞, on a manifold M there exists a
C∞-atlas A′ on M , which is Ck-compatible with A.

If A′′ is any other such a C∞-atlas on M , then it defines essentially the same
(C∞-diffeomorphic) differential structure on M .

This result shows that there is no specific difference in the topology of manifolds
of different classes of differentiability Ck, 1 6 n 6 ∞ (existence of C1-atlas implies
existence and essentially uniqueness of C∞-atlas). That is why we will be dealing
in what follows only with smooth (C∞) manifolds.

Remark. On the contrary, topological manifolds are in general not smoothable, and
smooth manifolds cannot be made analytic. So, we will exclude classes C0 and Ca

from the further considerations.

Different but diffeomorphic differential structures

Example. Any homeomorphism f : R→ R gives a chart and thus defines a certain
smooth structure in R. It differs from the standard one, unless f is a diffeomor-
phism.

For example, consider an atlas A1 = {x3} formed by a uniques chart R → R,
x 7→ x3. It is not compatible with the standard chart in R, the identity map x 7→ x,
and thus A1 is not compatible with the standard atlas A0 = {x}.



Exercise. (1) Show that the algebra of smooth functions Ck(R,A1) with respect to
the atlas A1 is a subalgebra of the usual algebra Ck(R,A0) of smooth functions on
R.

(2) Show that line R with the differential structures defined by A1 is diffeomorphic
to the standard R.

Remark. We conclude that A0 and A1 define distinct differential structures on
R, which are however equivalent up to a diffeomorphism. Such a distinction is
not very crucial from the point of view of differential topology. It is much more
essential to understand if the differential structures on a manifold are equivalent
up to diffeomorphis.

For example, it turns out that any manifold of dimension 6 3 has essentially
(that is up to a diffeomorphism) unique differential structure. Beginning from the
dimension 4 it is no longer true. On one hand, manifolds may have no smooth
structure at all. On the other hand, there may be many such structures, essentially
non-equivalent.

This phenomenon was discovered by J.Milnor in 1950s, who constructed famous
27 “exotic” 7-sphere (that is essentially non-equivalent differential structures on
S7).

Implicit presentation of differential manifolds

A subset L ⊂ M in a smooth manifold M of dimension m is called a (smooth)
l-dimensional submanifold of M if for any point x ∈ M there exists a chart φ : U →
Rm around x, such that φ(U ∩ L) = Rl. This means that l looks in this coodinate
system like a subspace Rl of Rm.

Note that the restriction of φ is a chart on L mapping V = U ∩ L to Rl.

Exercise. Check that these charts agree. Define a differential structure on L.
Show that the inclusion L → M is a smooth map.

According to the Whitney embedding theorem, any smooth manifold can
be considered lying in RN (for sufficiently big N), that is diffeomorphic to a sub-
manifold of RN .

Submanifolds in a manifold M most often appear as the locus L = f−1(y), where
y ∈ N is a regular value of some smooth mapping f : M → N m = dim M > n =
dim N . We recall that x ∈ M is called a regular point if the rank of the differential
dxf has maximal rank, n, and critical points otherwise. If f−1(y) contains a critical
point, then y ∈ N is called critical value. Otherwise (if f−1(y) consists of regular
values or empty) y is called a regular value .

Example. Consider f : Rm → Rn, x = (x1, . . . , xm) f = (f1, . . . , fn), and L =
f−1(0). At a regular point the Jacobi matrix (∂fi/∂xj) has maximal rank n. By
the implicit function theorem, there exists a neighborhood U ⊂ Rm (say, a ball)
around x such that U ∩L has 1-1 projection to one of the coordinate (m−n)-planes
in Rm, and the remaining n coordinates express as smooth functions of the chosen
(m− n) coordinates.

The projection to this (m− n) plane provides a chart L ∩ U → Rm−n.

Exercise. Prove that such charts are compatible. Prove that L is a smooth mani-
fold in case of arbitrary M .



Exercise. Prove that the smooth structure on Sn = {x2
0 + · · · + x2

n = 0} ⊂ Rn+1

defined implicitly coincides with the structure defined earlier by stereographic pro-
jection.

Homework. In the following examples determine if the set is a smooth manifold.
Find its dimension, the local coordinate systems.

(1) 



3x + y − z + u2 = a

x + y + 2z + u = 0
2x + 2y − 3z + 2u = 0

(2) The Lie groups SL(n,R) ⊂ Rn×n SL(n,C) ⊂ Cn×n

(3) Lie groups O(n) and U(n).
(4) Stiefel manifold Sn,k formed by all k-frames in Rn.


