METU Department of Mathematics Math 541 Differential Topology Spring 2015 S.Finashin

Final, Part 1

June 6, 32 points in 4 questions

Name and the student number:

Q1. (10 pts)

- (1) What does mean "map $f: M \to N$ is transversal to a submanifold $L \subset N$ "?
- (2) State the theorem about the preimage of a submanifold with respect to a map transversal to that submanifold.
- (3) What is the exponential map ?
- (4) What is a tubular neighborhood of a submanifold ?
- (5) What is a smooth homotopy ?
- (6) What is a Riemannian metric in a vector bundle E? How it can be defined as a tensor field?
- (7) State the Whitney embedding theorem.
- (8) What is a cobordism from manifold M_0 to manifold M_1 ? In which case it is called "oriented"?

Q2. (8 pts) Give a more simple description of manifolds obtained by the following constructions.

- (a) The double of $S^2 \times S^3$.
- (b) The connected sum $\mathbb{C}P^2 \# S^4$.
- (c) The connected sum of two tori T^2 .
- (d) The double of the Möbius band.
- (d) A tubular neighborhood of S^1 in \mathbb{R}^2 .
- (e) A tubular neighborhood of a knot (S¹ embedded in \mathbb{R}^3).

Q3. (8 pts) Explain why any closed surface embedded into \mathbb{R}^3 is orientable.

Q2. (8 pts) (a) Map f from 15-dimensional manifold M to \mathbb{R}^{20} is transverse to a 13-dimensional submanifold $L \subset \mathbb{R}^{20}$. What is the dimension of $f^{-1}(L)$?

(b) For a given homotopy $X \times [0,1] \to \mathbb{CP}^2 \times S^5$, the preimage $f^{-1}(y)$ of a regular value y is \mathbb{RP}^2 . Find the dimension of X.

(c) In the previous question, show that X cannot be orientable.

Q3. (8 pts) (a) Show that a sphere S^{n-1} in \mathbb{R}^n has a trivial normal bundle.

(b) Knowing that S^3 is parallelizable (which means that its tangent bundle TS^3 is trivial) show that its self-intersection in TS^3 is zero.

(c) Show that for any parallelizable manifold X its Euler characteristic $\chi(X)$ vanishes.

(d) Knowing that $\chi(X) = 0$ deduce that the self-intersection index of the diagonal $\Delta_X \subset X \times X$ is zero.

(e) Find the self-intersection index of the diagonal $\Delta_F \subset F \times F$ where F is a closed oriented surface of genus 2.

Q5. (10 pts) Knowing that a vector field V in \mathbb{CP}^2 has only non-degenerate zeros, estimate from below the number of zeros.

Q5. (10 pts) (a) Map $f: X \to Y$ is null-homotopic and $g: X \to Z$ is any map, dim $X = \dim Y + \dim Z = n$. Prove that the map $X \to Y \times Z$, $x \mapsto (f(x), g(x))$ has degree 0. (b) Show that any map $S^n \to S^1 \times X$, dim X = n - 1, has degree 0.