Midterm 1, Part 2, April 8, 28 points in 5 questions Name and the student number:

Q1. (6 pts) Show that map $f : \mathbb{R}P^1 \to \mathbb{R}P^2$, $f([x_0 : x_1]) = [x_0^2 : x_1^2 : x_0x_1]$ is (1) well-defined, (2) smooth, (3) is an immersion, (4) is an embedding.

Q2. (6 pts) Consider map $g: \operatorname{SO}_2 \times \mathbb{R}^2 \to \mathbb{R}^2$, g(A, v) = Av, where $A \in \operatorname{SO}_2$ is an orthogonal 2×2 -matrix and $v \in \mathbb{R}^2$ is a 2-vector.

- (1) show that 0 is a critical value;
- (2) show that for all $v \in \mathbb{R}^2$, $v \neq 0$, v is a regular value;
- (3) find $g^{-1}(1,0)$.

Q3. (6 pts) Consider smooth maps between manifolds $f: X \to Y$ and $g: Y \to Z$.

- (1) Show that $\deg(g \circ f) = \deg f \times \deg g$ whenever all the degrees are well-defined.
- (2) In the case of dim $X = \dim Z = n$ and dim Y = m < n show that deg $(g \circ f) = 0$.
- (3) Show that any map $f: X \to \mathbb{R}^n$, dim X = n, has degree 0.

Q4. (4 pts) Assume that X and Y are oriented manifolds, dim X = n, dim Y = m, $\partial X \neq \emptyset$, $\partial Y = \emptyset$.

- (1) Determine if the product orientation of $X \times Y$ induces on its boundary $\partial(X \times Y)$ the same orientation as the product orientation on $\partial X \times Y$, where ∂X is endowed with the induced boundary orientation.
- (2) Can we say similarly that the two orientations on $\partial(Y \times X) = Y \times \partial X$ coincide?

Q5. (6 pts) Consider maps $f, g: T^2 \to T^2$, $f(z_1, z_2) = (z^2, z^3)$, and $g(z_1, z_2) = (z_1 z_2, z_1^2 z_2^{-1})$, where $T \subset \mathbb{C}$ is a unit circle.

- (1) Determine if f and g are it orientation preserving ?
- (2) Find the degrees of f and g.