Midterm 1, Part 2, April 8, 28 points in 5 questions
Name and the student number:
Q1. (6 pts) Show that map $f: \mathbb{R} \mathrm{P}^{1} \rightarrow \mathbb{R P}^{2}, f\left(\left[x_{0}: x_{1}\right]\right)=\left[x_{0}^{2}: x_{1}^{2}: x_{0} x_{1}\right]$ is (1) well-defined, (2) smooth, (3) is an immersion, (4) is an embedding

Q2. (6 pts) Consider map $g: \mathrm{SO}_{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g(A, v)=A v$, where $A \in \mathrm{SO}_{2}$ is an orthogonal 2×2-matrix and $v \in \mathbb{R}^{2}$ is a 2-vector.
(1) show that 0 is a critical value;
(2) show that for all $v \in \mathbb{R}^{2}, v \neq 0, v$ is a regular value;
(3) find $g^{-1}(1,0)$

Q3. (6 pts) Consider smooth maps between manifolds $f: X \rightarrow Y$ and $g: Y \rightarrow Z$.
(1) Show that $\operatorname{deg}(g \circ f)=\operatorname{deg} f \times \operatorname{deg} g$ whenever all the degrees are well-defined.
(2) In the case of $\operatorname{dim} X=\operatorname{dim} Z=n$ and $\operatorname{dim} Y=m<n$ show that $\operatorname{deg}(g \circ f)=0$.
(3) Show that any map $f: X \rightarrow \mathbb{R}^{n}$, $\operatorname{dim} X=n$, has degree 0 .

Q4. (4 pts) Assume that X and Y are oriented manifolds, $\operatorname{dim} X=n, \operatorname{dim} Y=m$, $\partial X \neq \varnothing, \partial Y=\varnothing$.
(1) Determine if the product orientation of $X \times Y$ induces on its boundary $\partial(X \times Y)$ the same orientation as the product orientation on $\partial X \times Y$, where ∂X is endowed with the induced boundary orientation.
(2) Can we say similarly that the two orientations on $\partial(Y \times X)=Y \times \partial X$ coincide?

Q5. (6 pts) Consider maps $f, g: T^{2} \rightarrow T^{2}, f\left(z_{1}, z_{2}\right)=\left(z^{2}, z^{3}\right)$, and $g\left(z_{1}, z_{2}\right)=\left(z_{1} z_{2}, z_{1}^{2} z_{2}^{-1}\right)$, where $T \subset \mathbb{C}$ is a unit circle.
(1) Determine if f and g are it orientation preserving?
(2) Find the degrees of f and g.

