Midterm 2, Part 1(take-home), due to May 14, 35 points in 6 questions Name and the student number:

Q1. (9 pts) Consider 2-dimensional vector bundle over \mathbb{RP}^1 with the two charts $\phi_i \colon U_i \to \mathbb{R}$, $i = 0, 1, U_i = \{ [x_0 : x_1] \mid x_i \neq 0 \}$, $\phi_0^{-1}(y) = [1 : y]$, $\phi_1^{-1}(x) = [x : 1]$. (a) Verify that the coordinate change between these two charts can be described by (x + 2, 1)

 $\phi_{01}(x) = \begin{pmatrix} x+2 & 1\\ 2x & x \end{pmatrix} \text{ and cannot be described by } \phi'_{01}(x) = \begin{pmatrix} x+1 & 1\\ 2x & x \end{pmatrix}$

(b) Write explicitly the relation between the basic vector fields $\{e_1, e_2\}$ of E in chart (U_0, ϕ_0) and basic vector fields $\{f_1, f_2\}$ in chart (U_1, ϕ_1) .

(c) For a given vector field $V = 2xe_1 + (x^3 + 1)e_2$, find its decomposition in f_1 and f_2 . Can V be extended to the whole projective line \mathbb{RP}^1 ?

Q2. (5 pts) Consider vector field $V = (x+2)\partial x$ and 1-form $\alpha = (x+2)dx$ in the chart $\{U_0, \phi_0\}$ of \mathbb{RP}^1 .

Calculate V and α in the coordinate y of the chart $\{U_1, \phi_1\}$ and determine if V takes finite values at every point of $\mathbb{R}P^1$.

Q3. (3 pts) Find the indices of the zeros of vector field $V = (x^2 - 2y)\partial x + (y^2 - 2x)\partial y$ in \mathbb{R}^2 . **Q4.** (6 pts) Consider mapping $f \colon \mathbb{R}P^2 \to \mathbb{R}P^2$, $[x : y : z] \mapsto [x^2 : y^2 : z^2]$ and a line $L = \{Ax + By + Cz = 0\} \subset \mathbb{R}P^2$.

(a) Under which conditions on A, B and C this line is transversal to f? (b) Find the equation of L and $f^{-1}(L)$ in the chart of $\mathbb{R}P^2$ with the domain $z \neq 0$.

Q5. (6 pts) Consider smooth maps between manifolds $f: X \to Y$ and $g: Y \to Z$, and a submanifold $L \subset Z$.

Prove that $g \circ f$ is transverse to L if and only if the two conditions are satisfied: (1) g is transverse to L and (2) f is transverse to $g^{-1}(L)$.

Q6. (6 pts) Give an example of a partition of unity on \mathbb{RP}^1 subordinate to the open covering by charts U_1 and U_1 .