Midterm 2, Part 1(take-home), due to May 14, 35 points in 6 questions Name and the student number:

Q1. (9 pts) Consider 2-dimensional vector bundle over $\mathbb{R P}^{1}$ with the two charts $\phi_{i}: U_{i} \rightarrow$ $\mathbb{R}, i=0,1, U_{i}=\left\{\left[x_{0}: x_{1}\right] \mid x_{i} \neq 0\right\}, \phi_{0}^{-1}(y)=[1: y], \phi_{1}^{-1}(x)=[x: 1]$.
(a) Verify that the coordinate change between these two charts can be described by $\phi_{01}(x)=\left(\begin{array}{cc}x+2 & 1 \\ 2 x & x\end{array}\right)$ and cannot be described by $\phi_{01}^{\prime}(x)=\left(\begin{array}{cc}x+1 & 1 \\ 2 x & x\end{array}\right)$
(b) Write explicitly the relation between the basic vector fields $\left\{e_{1}, e_{2}\right\}$ of E in chart $\left(U_{0}, \phi_{0}\right)$ and basic vector fields $\left\{f_{1}, f_{2}\right\}$ in chart $\left(U_{1}, \phi_{1}\right)$.
(c) For a given vector field $V=2 x e_{1}+\left(x^{3}+1\right) e_{2}$, find its decomposition in f_{1} and f_{2}. Can V be extended to the whole projective line $\mathbb{R P}^{1}$?

Q2. (5 pts) Consider vector field $V=(x+2) \partial x$ and 1-form $\alpha=(x+2) d x$ in the chart $\left\{U_{0}, \phi_{0}\right\}$ of $\mathbb{R P}^{1}$.

Calculate V and α in the coordinate y of the chart $\left\{U_{1}, \phi_{1}\right\}$ and determine if V takes finite values at every point of $\mathbb{R} \mathrm{P}^{1}$.

Q3. (3 pts) Find the indices of the zeros of vector field $V=\left(x^{2}-2 y\right) \partial x+\left(y^{2}-2 x\right) \partial y$ in \mathbb{R}^{2}.

Q4. (6 pts) Consider mapping $f: \mathbb{R P}^{2} \rightarrow \mathbb{R P}^{2},[x: y: z] \mapsto\left[x^{2}: y^{2}: z^{2}\right]$ and a line $L=\{A x+B y+C z=0\} \subset \mathbb{R P}^{2}$.
(a) Under which conditions on A, B and C this line is transversal to f ?
(b) Find the equation of L and $f^{-1}(L)$ in the chart of $\mathbb{R P}^{2}$ with the domain $z \neq 0$.

Q5. (6 pts) Consider smooth maps between manifolds $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, and a submanifold $L \subset Z$.

Prove that $g \circ f$ is transverse to L if and only if the two conditions are satisfied: (1) g is transverse to L and (2) f is transverse to $g^{-1}(L)$.

Q6. (6 pts) Give an example of a partition of unity on $\mathbb{R P}^{1}$ subordinate to the open covering by charts U_{1} and U_{1}.

