METU Department of Mathematics Math 541 Differential Topology Spring 2015 S.Finashin

Midterm 2, Part 2

May 14, 32 points in 4 questions

Name and the student number:

Q1. (10 pts)

- (1) State the local triviality condition for a vector bundle.
- (2) What is an atlas of vector bundle ? What are the coodinate change maps for vector bundle charts ?
- (3) What does mean "a smooth vector bundle" ?
- (4) What is an orientation of a vector bundle ? What does mean "non-orientable vector bundle" ?
- (5) What is a Riemannian metric in a vector bundle E? How it can be interpreted as a tensor field?
- (6) How a Riemannian metric allows to identify a vector bundle with its dual?
- (7) What is a partition of unity subordinate to a given open covering $\{U_{\alpha}\}$?

Q2. (8 pts) (1) What does mean "map f is transversal to a submanifold"?

(2) What does mean "submanifolds X and Y are transversal in Z"?

(3) What is the dimension of a transverse intersection of two n-dimensional submanifolds inside m-dimensional manifold ? For which n and m this intersection must be empty ?

(4) State the theorem about the preimage of a submanifold with respect to a map transversal to that submanifold.

(5) What is the intersection index of submanifolds and in which setting is it defined ? What is the self-intersection index of a submanifold ?

(6) What does mean "stability"? Give example of stable properties.

Q3. (8 pts) (1) What is an isolated zero of a vector field and how to find its index ? What does mean its non-degeneracy ?

(2) Give an example of a vector field and its zero, whose index is different from ± 1 . Explain why.

(3) What is a degenerate critical point ? What is a Morse function ?

(4) What is the Milnor number of a critical point ?

Q4. (6 pts) Determine if the map $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x + y^2, xy)$, is transverse to the line $\{x + y = 1\}$.