PROBLEMS IN HOMOLOGY THEORY

Problem 1. Construct an example of a map which is not null-homotopic, but induces a trivial map in homology.

Problem 2. Prove that for any closed manifold M of dimension $n>0$ there exists $i \leqslant n$ such that $\pi_{i}(M) \neq 0$.
Problem 3. Prove that $\mathbb{C P}^{3}$ and $S^{2} \times S^{4}$ are homotopy non-equivalent.
Problem 4. Prove that the multiplication in the ring $H^{*}(\Sigma X)$ is trivial for suspension ΣX over any X.
Problem 5. Prove that a group G cannot act on a contractible cell complex X if (a) X is a finite complex; (b) X is finitely-dimensional (possibly infinite) and G is a finite group.

Problem 6. Prove that $\left[K, S^{n}\right]=H^{n}(K, \mathbb{Z})$, if $\operatorname{dim} K=n$.
Problem 7. (a) Prove that $\mathbb{C P}{ }^{n} \backslash S^{1} \cong \mathbb{C P}{ }^{n-1} \vee S^{2 n-2}$. (b) Determine S^{n} / S^{k} and $S^{n} \backslash S^{k}$ up to homotopy equivalence. (c) Prove that $X \wedge S^{1}=\Sigma X$. Here $X \wedge S^{1}=\left(X \times S^{1}\right) /\left(X \vee S^{1}\right)$.
Problem 8. Assume that the universal covering of M is \mathbb{R}^{n}. Prove that $[X, M]=$ $\operatorname{Hom}\left(\pi_{1}(X) \rightarrow \pi_{1}(M)\right)$ for any path-connected X.
Problem 9. (a) Determine the ring structure in $H^{*}\left(\mathbb{C P}{ }^{2} \backslash A_{3}\right)$ and $H^{*}\left(\mathbb{C P}^{2}, A_{3}\right)$ for a non-singular cubic $A_{3} \subset \mathbb{C P}^{2}$. (b) Determine the structure of a module over $H^{*}\left(\mathbb{C P}^{2}\right)$ in these rings. (c) Determine the ring structure in the cohomology of $\mathbb{R P}^{3} / \mathbb{R P}^{1}$ and $\mathbb{C P}^{3} / \mathbb{C} P^{1}$.

Problem 10. Describe the transfer in the Gysin sequence for the natural fibrations (1) $S^{2 n+1} \rightarrow \mathbb{C P}{ }^{n}$, (2) $L(n, 1) \rightarrow S^{2}$, (3) det: $U(n) \rightarrow U(1)$, (4) $\mathbb{C P}{ }^{3} \rightarrow \mathbb{H} P^{1}=S^{4}$ 。

Problem 11. Determine the transfer map $f_{!}$in homology for the following inclusion maps (a) $\mathbb{R P}^{3} \rightarrow \mathbb{C P}^{3}$, (b) $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{3}$, (c) $A_{n} \rightarrow \mathbb{C P}^{2}$ (A_{n} is a non-singular curve of degree n), (d) $Q \rightarrow \mathbb{C P}^{3}$ (Q is a non-singular quadric).
Problem 12. What does Lefschetz fixed point theory says about possible number of fixed points of maps $\mathbb{C P}^{2} \rightarrow \mathbb{C P}{ }^{2}, S^{2} \times S^{4} \rightarrow S^{2} \times S^{4}$?
Problem 13. Consider a map $f: T^{2} \rightarrow T^{2}$ with $f_{*}: \pi_{1}\left(T^{2}\right) \rightarrow \pi_{1}\left(T^{2}\right), f_{*}=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Assuming that f has finitely many fixed points, determine their (algebraic) number.
Problem 14. Determine the obstruction for a section in the following bundles: (a) $S^{2 n+1} \rightarrow \mathbb{C P}{ }^{n}$, (b) $S^{n} \rightarrow \mathbb{R} P^{n}$, (c) $L F_{g} \rightarrow F_{g}$, where $L F_{g}$ is the space of linear elements on a genus g surface F_{g}.
Problem 15. What can you say about the homotopy classes of maps, $\left[S^{2} \times S^{2} \rightarrow\right.$ $\left.S^{2}\right],\left[S^{2} \times S^{2} \rightarrow S^{3}\right],\left[\mathbb{C P}^{2} \rightarrow S^{2}\right],\left[\mathbb{C P}^{3} \rightarrow S^{2} \times S^{4}\right]$, using the obstruction theory?

