Middle East Technical University Fall 2002 Math 744 Fundamental Techniques in Dif. Topology PROBLEMS IN HOMOLOGY THEORY

Problem 1. Construct an example of a map which is not null-homotopic, but induces a trivial map in homology.

Problem 2. Prove that for any closed manifold M of dimension n > 0 there exists $i \leq n$ such that $\pi_i(M) \neq 0$.

Problem 3. Prove that \mathbb{CP}^3 and $S^2 \times S^4$ are homotopy non-equivalent.

Problem 4. Prove that the multiplication in the ring $H^*(\Sigma X)$ is trivial for suspension ΣX over any X.

Problem 5. Prove that a group G cannot act on a contractible cell complex X if (a) X is a finite complex; (b) X is finitely-dimensional (possibly infinite) and G is a finite group.

Problem 6. Prove that $[K, S^n] = H^n(K, \mathbb{Z})$, if dim K = n.

Problem 7. (a) Prove that $\mathbb{CP}^n \setminus S^1 \cong \mathbb{CP}^{n-1} \vee S^{2n-2}$. (b) Determine S^n/S^k and $S^n \setminus S^k$ up to homotopy equivalence. (c) Prove that $X \wedge S^1 = \Sigma X$. Here $X \wedge S^1 = (X \times S^1)/(X \vee S^1)$.

Problem 8. Assume that the universal covering of M is \mathbb{R}^n . Prove that $[X, M] = \text{Hom}(\pi_1(X) \to \pi_1(M))$ for any path-connected X.

Problem 9. (a) Determine the ring structure in $H^*(\mathbb{CP}^2 \setminus A_3)$ and $H^*(\mathbb{CP}^2, A_3)$ for a non-singular cubic $A_3 \subset \mathbb{CP}^2$. (b) Determine the structure of a module over $H^*(\mathbb{CP}^2)$ in these rings. (c) Determine the ring structure in the cohomology of $\mathbb{RP}^3/\mathbb{RP}^1$ and $\mathbb{CP}^3/\mathbb{CP}^1$.

Problem 10. Describe the transfer in the Gysin sequence for the natural fibrations (1) $S^{2n+1} \to \mathbb{C}P^n$, (2) $L(n,1) \to S^2$, (3) det: $U(n) \to U(1)$, (4) $\mathbb{C}P^3 \to \mathbb{H}P^1 = S^4$.

Problem 11. Determine the transfer map $f_!$ in homology for the following inclusion maps (a) $\mathbb{RP}^3 \to \mathbb{CP}^3$, (b) $\mathbb{CP}^2 \to \mathbb{CP}^3$, (c) $A_n \to \mathbb{CP}^2$ (A_n is a non-singular curve of degree n), (d) $Q \to \mathbb{CP}^3$ (Q is a non-singular quadric).

Problem 12. What does Lefschetz fixed point theory says about possible number of fixed points of maps $\mathbb{CP}^2 \to \mathbb{CP}^2$, $S^2 \times S^4 \to S^2 \times S^4$?

Problem 13. Consider a map $f: T^2 \to T^2$ with $f_*: \pi_1(T^2) \to \pi_1(T^2)$, $f_* = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Assuming that f has finitely many fixed points, determine their (algebraic) number.

Problem 14. Determine the obstruction for a section in the following bundles: (a) $S^{2n+1} \to \mathbb{C}P^n$, (b) $S^n \to \mathbb{R}P^n$, (c) $LF_g \to F_g$, where LF_g is the space of linear elements on a genus g surface F_g .

Problem 15. What can you say about the homotopy classes of maps, $[S^2 \times S^2 \rightarrow S^2]$, $[S^2 \times S^2 \rightarrow S^3]$, $[\mathbb{CP}^2 \rightarrow S^2]$, $[\mathbb{CP}^3 \rightarrow S^2 \times S^4]$, using the obstruction theory ?