Middle East Technical University Fall 2002 Math 744 Fundamental Techniques in Differential Topology

PROBLEM LIST IV

Sheaves

Problem 1. Let \mathcal{O}_X denotes the sheaf of smooth functions on a smooth manifold X, that is $\mathcal{O}_X(U) = \{f : U \to \mathbb{R}\}$ (where f is smooth). Prove that \mathcal{O}_X determine the differential structure on X. Specifically,

- (1) describe a differential structure on X in terms of the sheaf \mathcal{O}_X ;
- (2) formulate the condition under which a map $h: X \to Y$ is a diffeomorphism in term of sheaves \mathcal{O}_X and \mathcal{O}_Y on smooth manifolds X and Y;
- (3) find the conditions under which a subsheaf of the sheaf of continuous functions on a manifold X defines a differential structure on X.

Problem 2. Let \mathcal{O}_X^* denotes the sheaf of \mathbb{C}^* -valued continuous functions on X (that is $\mathcal{O}_X^*(U) = \{f : U \to \mathbb{C}^*\}$). Check that the transition functions for a complex line bundle over X define a 1-cocycle in \mathcal{O}_X^* (hint: find first a suitable open covering of X and define a cycle corresponding to it, then pass to the limit). Set up a correspondence between $H^1(X, \mathcal{O}_X^*)$ and the isomorphism classes of line bundles over X.

Problem 3. Construct the complex $C_{I,\mathcal{F}}$ for the standard covering of \mathbb{RP}^2 by affine charts $\{U_0, U_1, U_2\}$ and the locally constant sheaf \mathcal{F} with $\mathcal{F}_x = H_2(\mathbb{RP}^2, \mathbb{RP}^2 \setminus \{x\})$. Determine the homology of this complex.

Problem 4. Let \mathcal{O}_A denotes the sheaf of continuous functions on A. Describe explicitly the steaks of its direct image $i_*\mathcal{O}_A$ under the inclusion map $i: A \to X$. Consider in particular examples of inclusions $[0, 1] \to \mathbb{R}$ and $[0, 1] \to \mathbb{R}^2$.

Problem 5. Given a map $f: X \to Y$ and sheaves \mathcal{F}_X and \mathcal{F}_Y on X and Y respectively, construct natural homomorphisms

$$H^*(Y, f_*\mathcal{F}_X) \to H^*(X, \mathcal{F}_X)$$
$$H^*(Y, \mathcal{F}_Y) \to H^*(X, f^*\mathcal{F}_Y)$$