PROBLEM LIST V

Alexander Polynomial and the Torsion

Problem 1. Consider a real vector space V as a Λ-module, $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$, where t act on V as an invertible linear operator $T: V \rightarrow V$. Show that
(1) V is a torsion module (that is contains no free summands over Λ);
(2) the torsion $|V|_{\Lambda}$ coincides with the characteristic polynomial, Δ_{L}, of L.

Problem 2.

(1) Find a Seifert matrix, S, and the Alexander polynomial Δ_{K} of a torus $(2,2 n+1)$ knot K.
(2) Compare your result with the characteristic polynomial of the monodromy matrix $H=S^{T} S^{-1}$ for this knot.
(3) Represent H as a product of the Dehn twists around the generators of the Seifert surface.

Problem 3. Consider the mapping torus M_{f} of a homeomorphism $f: T^{2} \rightarrow T^{2}$, where $f=t_{a} t_{b}$ is a product of Dehn twists around the generators a, b of the torus T^{2}.
(1) Describe generators of $C_{*}=C_{*}\left(\widetilde{M}_{f}\right)$ over $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ (specifying the corresponding cells in \widetilde{M}_{f}).
(2) Describe the differentials in the complex C_{*}.
(3) Describe the complex $C_{*}\left(M_{f} ; \phi\right)$, where $\phi: \Lambda \rightarrow \mathbb{C}$ is a representation mapping t into $z \in \mathbb{C}^{*}$.
(4) Determine for which values of z the homology $H_{*}\left(M_{f}, \phi\right)$ vanish.
(5) Determine the Reidemeister torsion for those values z.
(6) Observe the relation between the Reidemeister torsion and the Alexander polynomial in this example.

