Middle East Technical University Fall 2002 Math 744 Fundamental Techniques in Differential Topology

PROBLEM LIST V

Alexander Polynomial and the Torsion

Problem 1. Consider a real vector space V as a Λ -module, $\Lambda = \mathbb{R}[t, t^{-1}]$, where t act on V as an invertible linear operator $T: V \to V$. Show that

- (1) V is a torsion module (that is contains no free summands over Λ);
- (2) the torsion $|V|_{\Lambda}$ coincides with the characteristic polynomial, Δ_L , of L.

Problem 2.

- (1) Find a Seifert matrix, S, and the Alexander polynomial Δ_K of a torus (2, 2n+1)-knot K.
- (2) Compare your result with the characteristic polynomial of the monodromy matrix $H = S^T S^{-1}$ for this knot.
- (3) Represent H as a product of the Dehn twists around the generators of the Seifert surface.

Problem 3. Consider the mapping torus M_f of a homeomorphism $f: T^2 \to T^2$, where $f = t_a t_b$ is a product of Dehn twists around the generators a, b of the torus T^2 .

- (1) Describe generators of $C_* = C_*(\widetilde{M}_f)$ over $\Lambda = \mathbb{Z}[t, t^{-1}]$ (specifying the corresponding cells in \widetilde{M}_f).
- (2) Describe the differentials in the complex C_* .
- (3) Describe the complex $C_*(M_f; \phi)$, where $\phi \colon \Lambda \to \mathbb{C}$ is a representation mapping t into $z \in \mathbb{C}^*$.
- (4) Determine for which values of z the homology $H_*(M_f, \phi)$ vanish.
- (5) Determine the Reidemeister torsion for those values z.
- (6) Observe the relation between the Reidemeister torsion and the Alexander polynomial in this example.