Middle East Technical University Fall 2002 Math 744 Fundamental Techniques in Differential Topology

PROBLEM LIST VI (TAKE-HOME MIDTERM II)

HEEGAARD SPLITTING AND KIRBY CALCULUS

Problem 1. Determine how the group $H_1(M)$ of a 3-manifold M changes after surgery along a knot $K \subset M$ with framing n. In particular

- (1) consider the case of $M = S^3$;
- (2) show that if M is $\mathbb{Z}HS$ then ± 1 -framed surgery along any knot K gives again $\mathbb{Z}HS$;
- (3) show that $H_1(M)$ does not change under ± 1 -framed surgery (knot K here is supposed to be null-homologous in M and framing is taken with respect to some Seifert surface for K);
- (4) show that all Seifert surfaces for K in any 3-manifold M determine the same framing of K.

Problem 2. Knowing the critical points of Morse functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ determine the ones for $f \circ p_X + g \circ p_Y : X \times Y \to \mathbb{R}$, where p_X , p_Y are the projections. In particular

- (1) estimate the Heegaard genus of $S^1 \times F$, where F is an oriented closed surfaces of genus g;
- (2) describe explicitly a Heegaard splitting of $S^1 \times F$ of genus 2g+1 (hint: note that $F^{\circ} \times [0,1]$ is a handlebody of genus 2g, where F° is obtained from F by removing a small 2-disk).
- (3) describe a similar Heegaard splitting for a mapping torus M_f , where $f: F \to F$.

Problem 3. Show that the four framed links sketched below describe the same 3-manifold.

Problem 4.

- (1) If in a framed link \mathcal{L} a component L_0 is an unknot with framing 0 which links only one other component L_1 geometrically once, then $L_0 \cup L_1$ may be moved away from the link \mathcal{L} without changing framings.
- (2) Show that the two-component link $\mathcal{L}' = L_0 \cup L_1$ defines S^3 , observing that a handle slide of L_1 along L_0 preserves the link changing only the framing of L_1 by ± 2 .
- (3) Deduce from the above observations that $M_{\mathcal{L}} \cong M_{\mathcal{L} \smallsetminus \mathcal{L}'}$, that is, if we remove L_0 and L_1 from \mathcal{L} than the 3-manifold described by the link will not change.