Test 1

(Take-home)

Q1. (5 pts) Let $\omega = e_1^* \wedge e_2^* + 2e_2^* \wedge e_3^* - (e_1^* + e_3^*) \wedge e_4^* + 5e_3^* \wedge e_1^* \in \Lambda^2(\mathbb{R}^4)^*$, where $\{e_i\}$ is a basis of \mathbb{R}^4 .

- (1) Find a matrix (ω_{ij}) of ω , as it is viewed as a bilinear form in the given basis of \mathbb{R}^4 .
- (2) Find the images of vectors e_i under the map $\widetilde{\omega}$.
- (3) Determine if ω is non-degenerate.
- (4) Find $\omega \wedge \omega$.
- (5) Find the Pfaffian of the matrix (ω_{ij}) .

Q2. (3 pts) Given a symplectic form $\omega = e_1^* \wedge e_2^* + e_2^* \wedge e_3^* + e_3^* \wedge e_4^*$ in \mathbb{R}^4

- (1) Find $\omega(v, w)$, where v = (1, 1, 1, 2) and w = (1, 3, 1, 3). Is span(v, w) a Lagrangian plane?
- (2) Find a Lagrangian plane contained is the subspace span (e_1, e_2, e_3) (that is, defined by equation $x_4 = 0$).
- (3) Find a Lagrangian plane containing vector $e_1 + e_2 + e_3 + e_4$.

Q3. (3 pts) Assume that $b: V \times V \to \mathbb{R}$ is a nondegenerate bilinear (for simplicity, symmetric or alternating) form in a vector space V of dimension n, and

$$W^{b} = \{ v \in V \mid b(v, w) = 0, \ \forall w \in W \}.$$

- (1) Show that the restriction $b|_W$ is degenerate if and only if there exists $v \in W$, $v \neq 0$, such that b(v, w) = 0 for all $w \in W$. And the latter is equivalent to that $W \cap W^b \neq \{0\}$.
- (2) Assuming that $b|_W$ is non-degenerate, show that for any $v \in V$ there exists $w \in W$ such that $v w \in W^b$.
- (3) Show using the results above that V is a direct sum of W and W^b if $b|_W$ is non-degenerate, and deduce that $\dim W^b + \dim W = n$.

Q4. (2 pts) Consider a subspace $W \subset V$ in a vector space V and define

$$W^{\perp} = \{ \alpha \in V^* \mid \alpha(v) = 0 \quad \forall v \in W \} \subset V^*.$$

Prove that $W \times W^{\perp}$ is a Lagrangian subspace of $V \times V^*$ with respect to the canonical symplectic form ω_{can} defined on $V \times V^*$ as follows:

$$\omega_{can}((v,\alpha),(w,\beta)) = \beta(v) - \alpha(w)$$

Q5. (4 pts) Prove that the intersection of any pair of the groups $O(\mathbb{R}^{2n})$, $GL(\mathbb{C}^n)$, and $Sp(\mathbb{R}^{2n})$ is contained in the third group. Deduce that the intersection of any pair of these groups is the unitary group $U(\mathbb{C}^n)$.

Recall the definitions: for a linear operator $T: V \to V$

(1) $T \in O(V)$ (T is orthogonal with respect to an inner product $(\langle *, * \rangle)$ in V), if

$$\langle Tv, Tw \rangle = \langle v, w \rangle \ \forall v, w \in V,$$

(2) $T \in GL(V)$ (T is complex with respect to a complex structure $J: V \to V$), if

$$T(Jv) = J(Tv) \ \forall v \in V,$$

(3) $T \in \text{Sp}(V)$ (T is symplectic with respect to a symplectic structure ω), if

$$\omega(Tv,Tw) = \omega(v,w) \ \forall v,w \in V.$$

Hint: Note also that the complex structure in $\mathbb{R}^{2n} \cong \mathbb{C}^n$, the dot product and the canonical symplectic form are related by the relation

$$\omega(v,w) = \langle v, Jw \rangle, \ \forall v, w \in \mathbb{R}^{2n}$$