Test 1

(Take-home)

Q1. (5 pts) Let $\omega=e_{1}^{*} \wedge e_{2}^{*}+2 e_{2}^{*} \wedge e_{3}^{*}-\left(e_{1}^{*}+e_{3}^{*}\right) \wedge e_{4}^{*}+5 e_{3}^{*} \wedge e_{1}^{*} \in \Lambda^{2}\left(\mathbb{R}^{4}\right)^{*}$, where $\left\{e_{i}\right\}$ is a basis of \mathbb{R}^{4}.
(1) Find a matrix $\left(\omega_{i j}\right)$ of ω, as it is viewed as a bilinear form in the given basis of \mathbb{R}^{4}.
(2) Find the images of vectors e_{i} under the map $\widetilde{\omega}$.
(3) Determine if ω is non-degenerate.
(4) Find $\omega \wedge \omega$.
(5) Find the Pfaffian of the matrix $\left(\omega_{i j}\right)$.

Q2. (3 pts) Given a symplectic form $\omega=e_{1}^{*} \wedge e_{2}^{*}+e_{2}^{*} \wedge e_{3}^{*}+e_{3}^{*} \wedge e_{4}^{*}$ in \mathbb{R}^{4}
(1) Find $\omega(v, w)$, where $v=(1,1,1,2)$ and $w=(1,3,1,3)$. Is $\operatorname{span}(v, w) a$ Lagrangian plane?
(2) Find a Lagrangian plane contained is the subspace $\operatorname{span}\left(e_{1}, e_{2}, e_{3}\right)$ (that is, defined by equation $x_{4}=0$).
(3) Find a Lagrangian plane containing vector $e_{1}+e_{2}+e_{3}+e_{4}$.

Q3. (3 pts) Assume that $b: V \times V \rightarrow \mathbb{R}$ is a nondegenerate bilinear (for simplicity, symmetric or alternating) form in a vector space V of dimension n, and

$$
W^{b}=\{v \in V \mid b(v, w)=0, \quad \forall w \in W\} .
$$

(1) Show that the restriction $\left.b\right|_{W}$ is degenerate if and only if there exists $v \in W$, $v \neq 0$, such that $b(v, w)=0$ for all $w \in W$. And the latter is equivalent to that $W \cap W^{b} \neq\{0\}$.
(2) Assuming that $\left.b\right|_{W}$ is non-degenerate, show that for any $v \in V$ there exists $w \in W$ such that $v-w \in W^{b}$.
(3) Show using the results above that V is a direct sum of W and W^{b} if $\left.b\right|_{W}$ is non-degenerate, and deduce that $\operatorname{dim} W^{b}+\operatorname{dim} W=n$.

Q4. (2 pts) Consider a subspace $W \subset V$ in a vector space V and define

$$
W^{\perp}=\left\{\alpha \in V^{*} \mid \alpha(v)=0 \quad \forall v \in W\right\} \subset V^{*} .
$$

Prove that $W \times W^{\perp}$ is a Lagrangian subspace of $V \times V^{*}$ with respect to the canonical symplectic form $\omega_{\text {can }}$ defined on $V \times V^{*}$ as follows:

$$
\omega_{c a n}((v, \alpha),(w, \beta))=\beta(v)-\alpha(w)
$$

Q5. (4 pts) Prove that the intersection of any pair of the groups $\mathrm{O}\left(\mathbb{R}^{2 n}\right)$, $\mathrm{GL}\left(\mathbb{C}^{n}\right)$, and $\operatorname{Sp}\left(\mathbb{R}^{2 n}\right)$ is contained in the third group. Deduce that the intersection of any pair of these groups is the unitary group $\mathrm{U}\left(\mathbb{C}^{n}\right)$.

Recall the definitions: for a linear operator $T: V \rightarrow V$
(1) $T \in \mathrm{O}(V)$ (T is orthogonal with respect to an inner product $(\langle *, *\rangle)$ in V), if

$$
\langle T v, T w\rangle=\langle v, w\rangle \forall v, w \in V,
$$

(2) $T \in \operatorname{GL}(V)$ (T is complex with respect to a complex structure $J: V \rightarrow V$), if

$$
T(J v)=J(T v) \quad \forall v \in V
$$

(3) $T \in \operatorname{Sp}(V)$ (T is symplectic with respect to a symplectic structure ω), if

$$
\omega(T v, T w)=\omega(v, w) \quad \forall v, w \in V
$$

Hint: Note also that the complex structure in $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$, the dot product and the canonical symplectic form are related by the relation

$$
\omega(v, w)=\langle v, J w\rangle, \quad \forall v, w \in \mathbb{R}^{2 n}
$$

