Test 2

(Take-home)
Q1. (2 pts) Justify that $S p\left(\mathbb{R}^{2}\right)=S L_{2}(\mathbb{R})$.
Q2. (4 pts) Find W^{ω} for the following subspaces in \mathbb{R}^{4} with respect to the canoni cal symplectic form $\omega=e_{1}^{*} \wedge f_{1}+e_{2}^{*} \wedge f_{2}$.
(1) $W=\operatorname{span}\left(e_{1}+e_{2}\right)$;
(2) $W=\operatorname{span}\left(e_{1}, f_{2}\right)$;
(3) $W=\operatorname{span}\left(e_{1}+e_{2}, f_{2}\right)$.

Are there isotropic, symplectic and Lagrangian subspaces among these examples?
Q3. (5 pts) Consider vector field $V=(x+1) \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}$, 1 -form $\alpha=(x+2 y) d x-$ $3 d y$, and $\omega=d x \wedge d y$.
(1) Find $f=\alpha(V)$;
(2) find $i_{V}(\omega)$;
(3) find a vector field W such that $i_{W}(\omega)=\alpha$;
(4) find V, α and ω in the polar coordinates.

