Test 2

(Take-home)

- Q1. (2 pts) Justify that $Sp(\mathbb{R}^2) = SL_2(\mathbb{R})$.
- **Q2.** (4 pts) Find W^{ω} for the following subspaces in \mathbb{R}^4 with respect to the canonical symplectic form $\omega = e_1^* \wedge f_1 + e_2^* \wedge f_2$.
 - (1) $W = \text{span}(e_1 + e_2);$
 - (2) $W = \text{span}(e_1, f_2);$
 - (3) $W = \operatorname{span}(e_1 + e_2, f_2).$

Are there isotropic, symplectic and Lagrangian subspaces among these examples?

- **Q3.** (5 pts) Consider vector field $V = (x+1)\frac{\partial}{\partial x} + y^2\frac{\partial}{\partial y}$, 1-form $\alpha = (x+2y)dx 3dy$, and $\omega = dx \wedge dy$.
 - (1) Find $f = \alpha(V)$;
 - (2) find $i_V(\omega)$;
 - (3) find a vector field W such that $i_W(\omega) = \alpha$;
 - (4) find V, α and ω in the polar coordinates.