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§1. Introduction

1.1. The subject. In this paper we define and study a relative Seiberg-Witten (SW) and
a similar relative Ozsváth-Szabó (OS) invariant for surfaces Σ of genus g > 1 embedded in
a 4-manifold X with self-intersection index Σ2 > 0. Recall that Taubes [T5] constructed
such a relative invariant, SWX,Σ, for g = 1, Σ2 = 0 analyzing the solution space to the
Seiberg-Witten equation on a compact manifold X◦ obtained after removing a tubular
neighborhood of Σ from X. It turned out that his invariant SWX,Σ is basically the same
as for the fiber sum, SWX#ΣE(1). We use a similar property as the definition of SWX,Σ

in the case of g > 1, which makes things look more elementary, although the result is
probably the same as might be following the traditional approach in the spirit of Taubes.

More precisely, we define SWX,Σ as the pull-back of SWX#ΣW , where W admits
a relatively minimal Lefschetz fibration W → S2 with a fiber Σ and with the Betti
number b1(W ) = 0 (existence of such W is obvious). Under such assumptions, the choice
of W turns out to be not essential, which is our first observation. The standard set of
properties for the SW invariant is naturally inherited by its relative version, enjoying some
improvements. For example, the product formula for SWX,Σ looks more simple, just as
the product of polynomials, like in the case g = 1 of Taubes (recall that its simplicity in
that case had as a consequence the remarkable results in [FS2]). Another improvement
concerns the adjunction inequality, which becomes applicable to membranes (surfaces
with the boundary on Σ), and does not require the positivity assumption for their self-
intersection. The invariant SWX,Σ appears to be a refinement of SWX restricted to the set
SpinC(X, sΣ) = {x ∈ SpinC(X)|c1(s) = χ(Σ)+Σ2}, which is the image of the forgetful map
absX,Σ : SpinC(X, Σ) → SpinC(X). Namely, if s ∈ SpinC(X, sΣ), then abs−1

X,Σ(s) contains
several relative basic structures, ri ∈ SpinC(X, Σ), and SWX(s) =

∑
i SWX,Σ(ri). The

invariant SWX,Σ can be easily calculated in many interesting examples, thanks to the
paper [FS2] containing some nice computation of SWX#ΣW .

The same strategy applied to the OS invariant of closed 4-manifolds yields a similar
relative invariant OSX,Σ. Note that the latter yields a refinement not only of the usual OS
invariant for X, but also for the complement X◦ = X rN(Σ) of a tubular neighborhood
N(Σ) of Σ. One can also construct in a similar spirit a refinement of the OS invariant for
some 4-manifolds whose boundary differs from Σ×S1, as it is sketched in 5.3 (relativization
with respect to a surface Σ ⊂ X is replaced there by relativization with respect to a
boundary component of X). A generalization of this constructions to all 4-manifolds with
boundary is likely to give a true TQFT for SpinC manifolds.

The manifolds that we consider in what follows are smooth, oriented, connected, and
closed, unless we state otherwise. We suppose also that the surface Σ ⊂ X has genus g > 1
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and either essential ([Σ] ∈ H2(X) has infinite order) with self-intersection Σ2 = 0, or has
Σ2 > 0 (in the latter case we blow it up to obtain Σ2 = 0). This implies in particular
that b+

2 (X) > 1.

1.2. The Seiberg-Witten and the Ozsváth-Szabó invariants. In its simplest ver-
sion, the SW invariant of a 4-manifold X is a function on the set of SpinC structures,
SWX : SpinC(X) → Z, which takes non-zero values only at a finite set of s ∈ SpinC(X),
called the basic structures, whose degree d(s) = 1

4 (c2
1(s)−(2χ(X)+3σ(X)) is zero. The cor-

responding Ozsváth-Szabó invariant (extracted as the reduced form of ΦX,s in [OS4],§4)
is an analogous function OSX : SpinC(X) → Z/± well-defined up to sign. The sign of
SWX(s) depends on the choice of an orientation of H1(X;R)⊕H2

+(X;R) called the ho-
mology orientation, which is supposed to be fixed. In a bit special case of b+

2 (X) = 1
the invariants SWX , OSX depend on some additional data that must be fixed: SWX

depends on an orientation of the line H2
+(X) (see [KM], [MST], or [T1]), while OSX ,

according to [OS4, Prop. 2.6], depend on the choice of an isotropic line in H2(X).
One can consider also a refined version of SWX and OSX , which may take non-

zero values for s ∈ SpinC(X) of degree d(s) > 0. These values are homomorphisms
SWX,s : AX → Z, OSX,s : AX → Z/±, supported in the set of homogeneous elements of
degree d(s) from the graded ring AX = Λ(H1(X)/ Tors) ⊗ Z[U ], where Λ stands for the
exterior algebra and the grading is defined on the generators, so that U has degree 2 and
α ∈ H1(X)r{0} have degree 1. The dual consideration, which is more convenient for us,
interprets the refined version of SWX as a map SpinC(X) → A∗X = Λ(H1(X))⊗ Z[U ] ∼=
Λ(H1(X;Z[U ])), such that SWX(s) is homogeneous of degree d(s). Reducing the values
of OSX modulo 2, we obtain a similar map SpinC(X) → A∗X ⊗ Z/2.

We will use notation SX : SpinC(X) → RX for any of the invariants SWX or OSX ,
either in the refined or in the reduced form. RX here is a ring A∗X or A∗X ⊗ Z/2 in case
of the refined forms of SWX or OSX . In case of the reduced forms, RX is just Z or Z/2.
The relative version, RX,Σ, of this ring is obtained by replacing H1(X) by H1(X, Σ) in
the definition (so that RX,Σ = RX is Z or Z/2 for the reduced forms of the invariants).

The formal sum
SX =

∑

s∈SpinC(X)

SX(s) ¦ s

can be considered as an element of the principal (affine) module RX [SpinC(X)] over the
group ring RX [H2(X)].

Remark. All the constructions and the results obtained below for SW and OS invariants
concern in fact any function SX satisfying a few basic properties of SW and OS invariants,
namely A1–A5 formulated in §3.

1.3. Definition of the relative invariant SX,Σ. Let SpinC(X, Σ) denote the set of
relative SpinC structures and absX,Σ : SpinC(X, Σ) → SpinC(X) the forgetful map. Gluing
of relative SpinC structures in a fiber sum X+#ΣX− (see 2.11) yields

∨ : SpinC(X+,Σ)× SpinC(X−, Σ) → SpinC(X+#ΣX−, Σ), (r+, r−) 7→ r+ ∨ r−

whose composition with the forgetful map gives

#Σ : SpinC(X+,Σ)× SpinC(X−, Σ) → SpinC(X+#ΣX−), (r+, r−) 7→ r+#Σr−.
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Choose any relatively minimal Lefschetz fibration W → S2 with a fiber Σ and b1(W ) =
0 and denote by rW,Σ ∈ SpinC(W,Σ) its canonical relative SpinC structure of the Lefschetz
fibration introduced in 2.7. If Σ2 = 0, then we define for any r ∈ SpinC(X, Σ)

SX,Σ(r) = SX#ΣW (r#ΣrW,Σ)

If Σ2 > 0, then we blow up X at points of Σ to obtain X̂, with Σ2 = 0, and let

SX,Σ(r) = SX̂,Σ(r̂)

where r̂ is the image of r under the natural map SpinC(X, Σ) → SpinC(X̂, Σ) (see 2.10).
We will let

SX,Σ =
∑

r∈SpinC(X,Σ)

SX,Σ(r) ¦ r ∈ RX,Σ[SpinC(X, Σ)]

Remarks.

(1) Note that b+
2 (X#ΣW ) > 1, so SX#ΣW is well defined.

(2) The differential type of X#ΣW may depend in principle on the framing of Σ in
X and W , so proving that SX,Σ is independent of W implies also independence of
the framings.

(3) In the case SX = SWX we should take care of the homology orientation for
X#ΣW . It is determined by the given homology orientation of X and the canon-
ical symplectic homology orientation of W (defined in [T4]) following the rule
described in [MST] after a modification, which is just such an alternation of the
homology orientation which eliminates the sign (−1)b(M,N) that appears in the
product formula of [MST]. In the other words, with such a homology orienta-
tion the product formula will look like A4, in §3 below. An advantage of such
a homology orientation in the fiber sums is that it is preserved by the natural
diffeomorphisms X#ΣY ∼= Y #ΣX and (X#ΣY )#ΣZ ∼= X#Σ(Y #ΣZ). In the
case of symplectic pairs (X, Σ) and (Y, Σ), the symplectic homology orientations
in X and Y induce the symplectic homology orientation of X#ΣY .

If Σ2 > 0, then we choose the homology orientation of X̂ induced by that of X.

1.4. The properties of SX,Σ.

1.4.1. Theorem. The invariant SX,Σ : SpinC(X, Σ) → RX,Σ is well-defined as it is
independent of the choice of W and has the following properties.

(1) Finiteness of the set BX,Σ = {r ∈ SpinC(X, Σ) |SX,Σ(r) 6= 0}.
(2) The blow-up relation SX̂,Σ(r̂) = SX,Σ(r) (if Σ2 > 0 in X ).
(3) The conjugation symmetry SX,Σ = ±SX,−Σ◦conj, where −Σ is Σ with the opposite

orientation, and conj : SpinC(X, Σ) → SpinC(X,−Σ) the conjugation involution.
(4) Normalization: if (X, Σ) is a symplectic pair, Σ2 > 0, and rX,Σ ∈ SpinC(X, Σ)

the canonical SpinC structure of a symplectic manifold, then SX,Σ(rX,Σ) = 1 (with
respect to the canonical homology orientation of a symplectic manifold). If more-
over X admits a relatively minimal Lefschetz pencil with a fiber Σ, then rX,Σ is
the only basic relative SpinC structure in SpinC(X, Σ).
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(5) Splitting formula relating the absolute and the relative SW invariants:

SX(s) =
∑

r∈abs−1
X,Σ(s)

SX,Σ(r),

for any s ∈ SpinC(X) such that c1(s)[Σ] = χ(Σ) + Σ2.
(6) The product formula for a fiber sum X = X+#ΣX− says:

SX,Σ = (SX+,Σ)(SX−,Σ)

More explicitly, this means that for any r ∈ SpinC(X, Σ)

SX,Σ(r) =
∑

r+∨r−=r

SX+,Σ(r+)SX−,Σ(r−)

where r± are varying in SpinC(X±, Σ). Equivalently, one can write it as

SX,Σ(r+ ∨ r−) =
∑

k∈Z
SX+,Σ(r+ + kσ+)SX−,Σ(r− − kσ−)

where σ± ∈ H2(X±, Σ) is dual to the fundamental class of Σ shifted inside X±rΣ.
(7) Adjunction inequality for r ∈ BX,Σ and a membrane F ⊂ X, with the connected

complement Σr ∂F (note that positivity of F 2 is not required)

−χ(F ) > F 2 + |r[F ]|.

The relations (4) and (5) of Theorem 1.4.1 imply together

Corollary 1.4.2. For any s ∈ SpinC(X) such that c1(s)[Σ] = χ(Σ) + Σ2

SX(s) =
∑

r+#Σr−=s

SX+,Σ(r+)SX−,Σ(r−)

Remarks.
(1) The sign “±” in Theorem 1.4.1(3) is (−1)

1
4 (σ(X)+χ(X)), like for the absolute in-

variant SX .
(2) The product of SX±,Σ in Theorem 1.4.1(6), is induced by the natural affine map

SpinC(X+,Σ)× SpinC(X−, Σ) ∼= SpinC(X, M) → SpinC(X, Σ)

associated with the corresponding cohomology homomorphisms.
(3) If b+

2 (X) = 1, then the splitting formula 1.4.1(5) should be applied to SWX(s)
defined by fixing the [Σ]-positive orientation of the line H+

2 (X), and OSX(s) is
defined by fixing the line spanned by [Σ] (these are the choices involved into the
corresponding product formulae).

(4) Theorem 1.4.1 does not mention the straightforward properties of the invariants
SX,Σ which do not involve Σ , for example, the adjunction inequality for a closed
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surface F ⊂ X r Σ, the blowup formula at a point x /∈ Σ, and the product
formula with respect to an additional surface Σ′ in X± r Σ. All these properties
are formulated exactly like in the case of the absolute invariants SX and proved
by consideration SX#ΣW .

(5) The invariant SX,Σ can be defined similarly for a multi-component surface Σ, as
one can take fiber sums with auxiliary Lefschetz fibrations along all the compo-
nents of Σ. The properties of such invariants are analogous to those formulated
in Theorem 1.4.1, and the proofs just repeat the arguments in §4.

(6) The case of genus g = 1 is a bit special, mainly because the product formula in
this case looks different. Nevertheless, the same definition for SX,Σ can be given
for g = 1, and all the properties except the splitting formula (5) in Theorem 1.4.1
still hold. In the case of SX = SWX , this follows from the results of Taubes [T5],
except for the property (7) (not discussed in [T5]), which is proved by the same
arguments as in the case g > 1.

1.5. Application: the genus estimate for membranes. By definition, a membrane
on a surface Σ in X is a compact surface F ⊂ X with the boundary ∂F = F ∩ Σ, at no
point of which F is tangent to Σ. The self-intersection index F 2 is defined with respect
to the normal framing along ∂F which is tangent to Σ. The number r[F ] (evaluation
of r ∈ SpinC(X, Σ) on F ) is defined in 2.6. Throughout the paper we suppose that
membranes are connected and oriented, although the adjunction inequality holds as well
for disconnected membranes, which follows from additivity of χ(F ), F 2 and r[F ].

We say that membranes F1, F2 on Σ ⊂ X are equivalent, F1 ∼ F2, if F2 is isotopic in
the class of membranes on Σ to F ′1, homologous to F1 outside Σ, that is, F1−F ′1 bounds an
oriented 3-chain in XrΣ (in particular, F1 and F ′1 coincide near their common boundary).
It is not difficult to show that F 2 and r[F ] are invariants of such a homology equivalence
relation. In particular, this implies the following minimal genus property for symplectic
and Lagrangian membranes in symplectic manifolds.

1.5.1. Corollary. Assume that X is a symplectic 4-manifold, Σ ⊂ X is an essential
surface with Σ2 > 0, g(Σ) > 1, and F ⊂ X is a membrane on Σ with the connected
complement Σ r L of the boundary L = ∂F . Assume furthermore that either Σ is sym-
plectic and F is Lagrangian, or vice versa, Σ is Lagrangian and F is symplectic. Then
for another membrane, F ′ ∼ F , we have g(F ′) > g(F ).

Proof. The adjunction inequality 1.4.1(7) becomes an equality for such X, Σ, F , and for
the canonical SpinC structure r ∈ SpinC(X, Σ) (symplectic or Lagrangian, depending on
the case considered). The assumptions formulated for F ′ imply that (F ′)2 = F 2 and
r[F ′] = r[F ], so 1.4.1(7) yields the required estimate for g(F ′). ¤

Another application of 1.4.1(7) is orthogonality of the relative basic classes, r ∈ BX,Σ,
to all (−1)-disc membranes.

1.5.2. Corollary. If D ⊂ X is a (−1)-disc membrane on a surface Σ ⊂ X as above,
then r[D] = 0 for all r ∈ BX,Σ. ¤

1.6. On the calculation of the invariants SX,Σ. The first trivial observation is
vanishing of the relative invariants SX,Σ if Σ is not a minimal genus surface in its homology
class, because non-vanishing would contradict to the adjunction inequality applied in
X#ΣW to the surface Σ′ homologous to Σ but of a smaller genus. This argument fails if
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Σ′ cannot be made disjoint from Σ in X (although the author does not know any example,
in which it really cannot).

The simplest example of calculation with non-vanishing invariants SX,Σ is contained
in Theorem 1.4.1(4). Performing rim-surgery of Σ ⊂ X considered in [FS2] we can
get more sophisticated examples, which show possibility of a non-trivial splitting of the
basic classes and of the invariants SX . The invariants SWX,Σ implicitly appeared in the
work [FS2], as they distinguish the embeddings of surfaces obtained by the rim-surgery
from Σ. Moreover, an obvious interpretation of the results of [FS2] yields calculation
of the invariant SWX,Σ after a rim knot surgery: it is just multiplied by the Alexander
polynomial of the knot. More precisely, assume that ` ⊂ Σ is a simple closed curve,
K ⊂ S3 is a knot and ΣK,` ⊂ X is a surface obtained from Σ ⊂ X by rim surgery along
` using K as a pattern.

1.6.1. Theorem. SWX,ΣK,`
= ∆K(δ([`]∗))SWX,Σ. ¤

Here [`]∗ ∈ H1(Σ) is dual to [`] ∈ H1(Σ), δ is the boundary map H1(Σ) → H2(X, Σ),
∆K is the Alexander polynomial in the symmetrized form, and ∆K(δ([`]∗)) is considered
as an element of the group ring Z[H2(X, Σ)] ⊂ RX,Σ[H2(X, Σ)].

1.7. The structure of the paper. In §2 we set up the notation and discuss the prop-
erties of the fiber sum and the conjugation operations involving relative SpinC structures
(this calculus is used in §4).

In §3, we recall some fundamental properties of SW and OS invariants formulating
them as axioms A1–A5 sufficient to construct the relative versions of the invariants. The
product formula A4 is essentially a reformulation of the formula in [MST] in a bit more
general setting. The normalization property A3(3) may be not as known as the other
axioms (at least, the author could not find it in literature), along with its corollary 3.1.2,
which may be of independent interest. In section §4, we deduce Theorem 1.4.1.

In §5, we discuss some further developments of the invariant SX,Σ. In 5.1, we discuss
possibility to use symplectic pairs (W,Σ) instead of Lefschetz pairs in the definition of
SX,Σ. In 5.2, we consider a version, SX,Σ,K , of the invariant SX,Σ that depends on a
subgroup K ⊂ H1(Σ), and which appears as we relax the assumption b1(W ) = 0 in the
definition of SX,Σ (this may suggest an analogy with the invariant in [CW], which also
involves K). To demonstrate a potential of our construction to obtain a refinement of
the SW and the OS invariants in the case of a 4-manifold with non-empty boundary, we
sketch in 5.3 a relative version of the invariant Fmix

X,s from [OS3] (for simplicity we consider
only the case of OS invariants).

1.8. Acknowledgements. The proof of Proposition 4.5.1 contains a construction sug-
gested by V. Kharlamov, which simplified considerably my original arguments. I should
thank also R. Fintushel for a remark about the sign in the product formula [MST] and
B.-L. Wang for commenting his paper [CW] (which made the author convinced that the
product formula in [CW] implies A4).

§2. Absolute and relative SpinC structures

2.1. Absolute SpinC structures. A SpinC structure in a principle SOn bundle, P → X,
is an isomorphism class of SpinCn-extensions, S → P , of P . The set of SpinC structures,
SpinC(P ), has a natural action SpinC(P ) × H2(X) → SpinC(P ), (s, h) 7→ s + h, which
makes it an affine space over H2(X). The projection SpinCn → SOn×U1 → U1 associates
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to S its determinant U1-bundle, det S, with the Chern class c1(S) = c1(det S), so that
c1(s + h) = c1(s) + 2h.

We simplify the notation and write just SpinC(X) instead of SpinC(P ), if a principal
bundle P → X is associated with the tangent bundle TX of a manifold X (an Euclidian
structure in TX should be fixed, but its choice is not essential).

2.2. The conjugation involution. The conjugate, S → X, to a principal SpinCn bundle,
S → X, set-theoretically coincides with the latter, but has the conjugate action of SpinCn
(induced by the conjugation automorphism in SpinCn, which covers the direct product
automorphism of SOn×U1, identical on SOn and non-identical in U1). The conjugation
defines an involution, conjP : SpinC(P ) → SpinC(P ), s 7→ s̄, such that c1(s̄) = −c1(s) and
s + h = s̄− h for any s ∈ SpinC(P ) and h ∈ H2(X).

2.3. Homology interpretation of SpinC structures. It is convenient to identify the
set SpinC(P ) with the coset of the image of H2(X) under the monomorphism π∗P : H2(X) →
H2(P ). This makes transparent the nature of the affine structure in SpinC(P ). Namely,
a SpinC extension F : S → P can be viewed as a principal U1-bundle over P since
ker(SpinCn → SOn) ∼= U1, and the Chern class c1(F ) ∈ H2(P ) defines the correspon-
dence between SpinC structures and those cohomology classes which have a non-trivial
restriction H2(P ) → H2(SOn) ∼= Z/2, n > 3, to a fiber of P .

Given s ∈ SpinC(P ) ⊂ H2(P ), one can observe that π∗P (c1(s)) = 2s and that s = −s.

2.4. The canonical SpinC structure of a Lefschetz fibration. An almost complex
structure in a SO2n bundle defines the SpinC-extension associated to the natural homo-
morphism Un → SpinCn. In particular, a symplectic manifold carries a canonical SpinC

structure represented by the symplectic SpinC extension, S → X. It is well-known that
the total space X of a Lefschetz fibration p : X → S2, carries a compatible symplectic
structure (except the case of null-homologous fibers of genus 1, in which X is still almost
complex) which gives the associated canonical SpinC structure.

In fact, to define a SpinC structure in a vector bundle E → X it is sufficient to
have an almost complex structure over its 3-skeleton, Ske3 X, only (more precisely, SpinC

structures can be viewed as equivalence classes of those almost complex structures over
Ske2 X that can be extended to Ske3 X). This gives an alternative way to introduce the
canonical SpinC structure in the Lefschetz fibration, using U1×U1 reduction of the tangent
bundle τX in the complement of the critical point set of p determined by the “vertical”
and the complementary “horizontal” SO2 = U1 subbundles.

2.5. Relative SpinC-structures. In the definition of a relative structure, in addition to
the SpinCn-bundle S → X considered in 2.1, we fix an isomorphism between the restriction
S|A and a certain reference principal SpinC bundle, SA → A. Such a reference bundle
appears naturally for example if X is a 4-manifold and A is a surface Σ ⊂ X, or a tubular
neighborhood N of Σ, or the boundary ∂N , since in these cases τX |A admits a natural
U1 × U1 reduction and thus, the associated SpinC4 -extension.

More formally speaking, let (X,A) be a CW-pair, πP : P → X a principal SOn bundle,
πP |A : PA → A the restriction of πP over A, and FA : SA → PA a SpinC extension of PA. A
relative SpinC extension of P with respect to SA is a SpinC-extension, S → X, F : S → P ,
together with an isomorphism of SpinC extensions over A, that is R : S|A → SA, such that
FA ◦R is the restriction of F over A. An isomorphism between relative SpinC-extensions
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F (i) : S(i) → P , R(i) : S(i)|A → SA, i = 1, 2, is defined as an isomorphism S(1) → S(2) of
SpinC bundles whose restriction over A commutes with R(1) and R(2). An isomorphism
class of relative SpinC-extensions is called a relative SpinC structure, and the set of such
structures is denoted by SpinC(P, SA), or simply by SpinC(X, A) if P and SA are evident.

It is straightforward to check that SpinC(P, SA) is an affine space over H2(X, A) and
the natural forgetful map abs : SpinC(P, SA) → SpinC(P ) is affine with respect to the
cohomology forgetful homomorphism H2(X, A) → H2(X).

The conjugation involution defined like in the absolute case interchanges SpinC(P, SA)
with SpinC(P, SA). It is anti-affine, that is r + h = r − h for r ∈ SpinC(P, SA), h ∈
H2(X, A).

2.6. Relative SpinC structures with respect to surfaces, Σ ⊂ X, and their
evaluation on membranes. Let SΣ → Σ denote the canonical SpinC extension defined
by the U1 × U1 reduction due to the splitting of the tangent bundle τX |Σ along Σ into a
sum τΣ ⊕ νΣ of the tangent and the normal bundles to Σ. Note that the inversion of the
orientation of Σ results in the conjugation of the associated canonical SpinC4 bundle, S−Σ =
SΣ. In particular, the conjugation involution in this case is SpinC(X, Σ) → SpinC(X,−Σ).

Assume that r ∈ SpinC(X, Σ). Note that any membrane (F, ∂F ) ⊂ (X, Σ) defines
trivializations of the both τΣ and νΣ along ∂F , and thus provides a trivialization of the
determinant bundle det SΣ

∼= τΣ ⊗ νΣ. The obstruction class in H2(F, ∂F ) for extension
of this trivialization to the whole F , as it is evaluated on the fundamental class, [F, ∂F ],
gives an integer denoted by r[F ]. It is easy to observe that r[F ] = r[−F ] = −(r[F ]).

2.7. The canonical relative SpinC structures in the case of symplectic or La-
grangian surface, Σ ⊂ X. Assume now that Σ ⊂ X is a symplectic surface with respect
to some symplectic structure ω in X that is ω|Σ > 0. Then we can define the canoni-
cal symplectic relative SpinC structure, rX,Σ ∈ SpinC(X, Σ) whose image abs(rX,Σ) ∈
SpinC(X) is the absolute symplectic canonical SpinC structure introduced in section 2.4.
Namely, the structure rX,Σ is represented by a SpinC extension S → P of the principal
SO4 bundle P → X, which arises from an almost complex structure determined in τX as
we fix a Riemannian metric in X compatible with ω. If we choose such a metric making
the surface Σ pseudo-holomorphic (which is always possible), then the restriction S|Σ is
naturally identified with the canonical SpinC-bundle SΣ → Σ.

Consider now the case of a Lagrangian surface Σ in a symplectic manifold X, in
which we can similarly define the canonical Lagrangian relative SpinC structure, rX,Σ ∈
SpinC(X, Σ). One way to do it is to make a Lagrangian surface symplectic by a perturba-
tion of the symplectic form. There is also an alternative description of this structure: it
concerns also the exceptional case of a null-homologous torus, in which such a perturba-
tion is impossible, and makes it evident that the choice of a perturbation is not essential.
It involves the canonical isomorphism between the two different almost complex structure
in τX |Σ: the one induced from X that is coming from the isomorphism τX |Σ ∼= τΣ ⊗ C,
and the one arising from U1 × U1 reduction due to the splitting τX |Σ ∼= τΣ ⊕ νΣ (this
isomorphism is just a special case of the canonical one, ξ ⊗ C ∼= ξ ⊕ ξ̄, for any complex
bundle ξ). The induced isomorphism of the associated SpinC bundles covers an automor-
phism of τX |Σ that can be canonically connected to the identity by an isotopy. This gives
an isomorphism between these SpinC extensions, which defines the Lagrangian relative
SpinC structure.
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Remark. Note that the canonical SpinC structure rX,Σ ∈ SpinC(X, Σ) of a symplectic pair
(X, Σ) is invariant under the monodromy induced by any symplectic isotopy of Σ in X,
whereas any other structure, r = rX,Σ + h ∈ SpinC(X, Σ), h ∈ H2(X, Σ), is sent by the
monodromy to rX,Σ + f∗(h), where f∗ is the cohomology monodromy.

The same concerns Lagrangian surfaces and Lagrangian isotopy.

2.8. Lefschetz fibrations and their conjugates. A special case of our interest is Σ
being a fiber of a Lefschetz fibration p : X → S2, (or more generally, a fiber in a Lefschetz
pencil). Such a fiber Σ ⊂ X is symplectic with respect to the symplectic form ω supported
by the Lefschetz fibration (or pencil), so there is a canonical structure rX,Σ ∈ SpinC(X, Σ)
from section 2.7.

The conjugate Lefschetz fibration p : X → S2 is by definition, set-theoretically the same
as p, however, with the opposite orientation chosen in the base-space S2 = −S2 and in
the fibers, Σ = −Σ (so that X itself has the same orientation as X). It is not difficult to
observe that rX,Σ = rX,Σ ∈ SpinC(X,−Σ).

2.9. The excision and the homotopy invariance theorems for SpinC struc-
tures. The propositions stated below mimic the standard results for the cohomology and
follow automatically from the latters, since an affine map associated with an isomorphism
must be an affine isomorphism.

2.9.1. Proposition (excision). Assume that a CW complex Z is decomposed into a
union of subcomplexes, Z = X∪Y , A = X∩Y . Consider a principal SOn bundle PZ → Z
and let PX , PY , PA denote its restrictions over X, Y , and A respectively. Fix a SpinC

extension, FY : SY → PY and let FA : SA → PA denote its restriction over A. Then the
restriction map

SpinC(PZ , SY ) → SpinC(PX , SA)

is an isomorphism of affine spaces agreeing with the isomorphism H2(Z, Y ) ∼= H2(X, A). ¤

2.9.2. Proposition (homotopy invariance). Assume that Σ is a deformation retract
of N ⊂ X. Let FN : SN → PN be a SpinC extension and SΣ = SN |Σ. Then the restriction
map SpinC(PX , SN ) → SpinC(PX , SΣ) is an isomorphism of the affine spaces agreeing
with the isomorphism H2(X, N) ∼= H2(X, Σ). ¤

2.9.3. Corollary. Let Σ ⊂ X be a surface in a 4-manifold, N ⊂ X its compact tubular
neighborhood, M = ∂N , and X◦ = X r Int(N). Then we have canonical affine isomor-
phisms SpinC(X, Σ) ∼= SpinC(X, N) ∼= SpinC(X◦,M). ¤

2.10. Connected sums and blowing up of SpinC structures. Definitions of the
connected sum and the blowup operations for the absolute SpinC structures are quite
trivial and well-known. They can be also easily extended to relative SpinC structures
(we leave it as an exercise). Namely, for a pair of n-manifolds X±, with codimension 2
submanifolds Σ±, and structures r± ∈ SpinC(X±,Σ±), one can define the connected sum
r+#r− ∈ SpinC(X+#X−, Σ+#Σ−), where Σ+#Σ− ⊂ X+#X− is the internal connected
sum of (X±, Σ±).

Let Σ ⊂ X be a surface in a four-manifold, and Σ̂ ⊂ X̂ its proper image after blowing
up X at a point of Σ, that is Σ#CP1 ⊂ X#(−CP2). For r ∈ SpinC(X, Σ), we define
r̂ ∈ SpinC(X̂, Σ̂) as r̂ = r#r−1, where r−1 ∈ SpinC(−CP2,CP1) is the unique structure
such that c1(abs(r−1)) = −1.
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2.11. Fiber sums of relative SpinC structures. Let Σ be a closed oriented surface
of genus g > 1. We say that X is a Σ-marked 4-manifold, if there is a fixed smooth
embedding f : Σ → X endowed with a normal framing of f(Σ) (in particular, Σ2 = 0).
To simplify the notation, we will be writing SpinC(X, Σ) rather then SpinC(X, f(Σ)).

Given Σ-marked 4-manifolds X±, consider their fiber sum X = X+#ΣX− = X◦
+∪f X◦

−,
where X◦

± = X± r Int(N±) (the complements of the tubular neighborhoods of Σ), and
the gluing diffeomorphism f : ∂N+ → ∂N− is naturally determined by the trivialization of
N± → Σ respecting the framings, so that ∂N+ and −∂N− are identified with M = Σ×S1.
Note that X has an induced structure of Σ-marked 4-manifold, since Σt = Σ× t ⊂ Σ×S1

has a natural normal framing. Operations r+#Σr− ∈ SpinC(X) and r+∨r− ∈ SpinC(X, Σ)
for r± ∈ SpinC(X±, Σ) are the compositions of the isomorphism

SpinC(X+, Σ)× SpinC(X−, Σ) ∼= SpinC(X◦
+,M)× SpinC(X◦

−,M) ∼= SpinC(X,M)

with the forgetful maps SpinC(X,M) → SpinC(X) and SpinC(X,M) → SpinC(X, Σ).
Given s± ∈ SpinC(X±, sΣ) we denote by s−#Σs+ a subset of SpinC(X) consisting of

the structures r−#Σr+ for all r± ∈ abs−1
X±,Σ(s±). It is not difficult to check that the set

s−#Σs+ is affine with respect to the subgroup ∆M ⊂ H2(X), which is the image of H1(Σ)
under the product of the homomorphism q∗ : H1(Σ) → H1(M) induced by the projection
q : M ∼= Σ× S1 → Σ and the boundary map δM : H1(M) → H2(X).

One can also interpret s−#Σs+ as a set consisting of those s ∈ SpinC(X) which have
d(s) = d(s+) + d(s−) and whose restriction to X◦

± coincides with that of s±.

2.12. The natural properties of the fiber sum operations with the relative SpinC

structures. It is not difficult to check that the operations introduced in 2.11 satisfy the
following natural properties

r1 ∨ r2 = r2 ∨ r1, and thus r1#Σr2 = r2#Σr1

(r1 ∨ r2) ∨ r3 = r1 ∨ (r2 ∨ r3), and thus (r1 ∨ r2)#Σr3 = r1#Σ(r2 ∨ r3)

(we denote the latter sum r1#Σr2#Σr3)

r1 ∨ r2 = r1 ∨ r2, and thus r1#Σr2 = r1#−Σr2

where the equalities mean that the obvious diffeomorphisms

(X1#ΣX2, Σ) ∼= (X2#ΣX1,Σ)

((X1#ΣX2)#ΣX3, Σ) ∼= (X1#Σ(X2#ΣX3),Σ)
X1#ΣX2

∼= X1#−ΣX2

send one of the corresponding SpinC structures to the other.
Some ambiguity in the notion of “the obvious diffeomorphism”, related in particular

to the ambiguity in Σ-marking of the fiber sums, turns out to be not essential. It is also
straightforward to check the following

Proposition 2.12.1. Assume that (Xi, Σ) are symplectic pairs, i = 1, 2, X = X1#ΣX2,
and ri ∈ SpinC(Xi, Σ) are the canonical relative SpinC structures. Then r1 ∨ r2 ∈
SpinC(X, Σ) is also the canonical SpinC structure of the symplectic pair (X, Σ). In par-
ticular, r1#Σr2 ∈ SpinC(X) is the canonical symplectic SpinC structure of X. ¤
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§3. The basic properties of the absolute SW and OS invariants

3.1. The axioms. Axioms A1, A3 and A4 below are essential first of all for the definition
of SX,Σ, that is for proving its independence of the choice of W , whereas axioms A2 and
A5 are required only for deriving the corresponding properties of SX,Σ (namely, 3 and 7)
in Theorem 1.4.1. We suppose that the closed 4-manifolds X and X± below have b+

2 > 1
(in the case b+

2 = 1 the formulations are similar, but require a bit more care).
A1. Finiteness. The set of the basic SpinC structures BX = {s ∈ SpinC(X) |SX(s) 6=

0} is finite for any X.
A2. Conjugation symmetry. SX ◦ conjX = ±SX , where conjX is the conjugation

involution in SpinC(X).
A3. Normalization. Assume that X is symplectic, endowed with the canonical homol-

ogy orientation (see [T4]), and sX ∈ SpinC(X) the canonical SpinC structure. Then
(1) SX(sX) = 1.
(2) If Σ ⊂ X is a symplectic surface of genus g > 1, Σ2 = 0, and a basic structure

s ∈ BX has the same restriction to XrΣ as sX , then s = sX . In the other words,
if s = sX + nσ ∈ BX , where σ ∈ H2(X) is dual to Σ, then n = 0.

(3) For any fiber sum X#ΣY = X◦∪Y ◦ of a relatively minimal Lefschetz fibration X

with any Σ-marked 4-manifold Y , the restriction s|X◦ ∈ SpinC(X◦) of any basic
SpinC structure s ∈ SpinC(X#ΣY, sΣ), coincides with the restriction sX |X◦ ∈
SpinC(X◦).

A4. Product formula. Let X = X−#ΣX+ = X◦
−∪X◦

+ be a fiber sum like in 2.11, with
a fiber Σ of genus g > 1. Choose s± ∈ SpinC(X±, sΣ) and let σ± ∈ H2(X±) denote the
Poincare dual class to Σ ⊂ X±. Then

∑

k∈Z
SX+(s+ + kσ+)SX−(s− − kσ−) =

∑

s∈s−#Σs+

SX(s).

A5. Adjunction inequality: −χ(Σ) > Σ2 + |c1(s)[Σ]|, for any s ∈ BX and a surface
Σ ⊂ X of genus g > 0, with Σ2 > 0.

Combining properties A3(1)-(2) with A4 and taking into account the remark about
s−#Σs+ and ∆M in the end of section 2.11, we obtain the following

3.1.1. Corollary. Assume that the pair (X−,Σ) in A4 is symplectic, and s− ∈ SpinC(X−),
r− ∈ SpinC(X−, Σ) are the canonical absolute and relative SpinC structures. Then for any
s+ ∈ SpinC(X+, sΣ)

SX+(s+) =
∑

s∈s−#Σs+

SX(s) =
∑

r+∈abs−1(s+)

SX(r+#Σr−) =
∑

h∈∆M

SX(s + h)

In the last sum, s is any fixed element of s−#Σs+ ⊂ SpinC(X) and ∆M is like in 4.1.

Applying A3(3) in the case of Y = Σ × S2, and making use of A3(2) we obtain the
following

3.1.2. Corollary. Assume that X → S2 is a relatively minimal Lefschetz fibration
with a fiber Σ. Then the canonical structure sX is the only basic structure in the set
SpinC(X, sΣ) = {s ∈ SpinC(X)|c1(s)[Σ] = χ(Σ)}.
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3.2. Properties A1, A2, and A5.
A1. The finiteness is a fundamental well-known property of SW invariants, which

holds as well for OS invariants, see [OS3], Theorem 3.3.
A2. It is also a well-known property. In fact, a set-theoretic identification of the

conjugate SpinC-bundles S and S̄ gives a point-wise correspondence (possibly alternating
the orientations) between the solutions spaces to the SW equations associated with S and
S̄. For the case of OS invariants, see [OS3], Theorem 3.5.

A5. The original version of inequality of Kronheimer-Mrowka and Taubes concerns
also the case of an essential sphere, not important for this paper. In the most general
form (including the case of Σ2 < 0) the adjunction formula is given in [OS2], Theorems
1.1–1.7 for SW invariants, and in [OS3], Theorem 1.4. for OS invariants.

3.3. Lefschetz normalization properties A3(1)–(3).
A3(1). For SW invariants this property is proved by Taubes [T1] (the Main Theo-

rem) in a more general setting, for symplectic manifolds. The case of OS invariants was
considered in [OS4], Theorem 5.1. For this part of A3 the minimality condition is not
required.

A3(2). Since the symplectic manifolds are of the simple type (see [T4] and Theorem
02(6)), the structure sX + nσ cannot be basic for n 6= 0, because d(sX + nσ) − d(sX) =
1
4 [c2

1(sX + nσ)− c2
1(sX)][X] = nc1(sX)[Σ] = nχ(Σ) 6= 0 in the case of g(Σ) > 1.

A3(3) for OS invariants. It is proved by the arguments in Lemma 5.7 from [OS4]
for OS invariants. The same scheme of the proof works for SW invariants as well, so we
will briefly review it (sending a reader to [OS4] for the notation and details).

The first step is to observe that the canonical structure sX ∈ SpinC(X) is (up to a
summand nσ) the only one satisfying the adjunction inequality with respect to a certain
family of surfaces F ⊂ XrΣ. For these surfaces F 2 < 0, and so in principle the inequality
may fail for a basic structure s ∈ SpinC(X), but in this case there is another basic SpinC

structure s′ = s + f , where f ∈ H2(X) is Poincare dual to [F ], and there exists ξ ∈ AF

such that ΦX,s′(ξx) = ΦX,s(x) for any x ∈ AX (the action of ξ on x means the action of the
image of ξ under the inclusion map AF → AX). One can notice next that the construction
of surfaces F in [OS4] yields a natural epimorphism H1(Σ) → H1(F ) commuting with the
inclusion homomorphisms from H1(Σ) and H1(F ) to H1(X), and so we may assume that
ξ ∈ AΣ. The second key observation is triviality of the action of AΣ in HF+(M, t), where
M = Σ × S1 and t = s|M is the canonical structure induced from sΣ ∈ SpinC(Σ) by the
projection M → Σ. This triviality is deduced in [OS4] as an immediate corollary of the
isomorphism HF+(M, t) ∼= Z.

The third ingredient of the proof is the relation between the invariants Fmix
X},s′} and

ΦX,s′ (the latter is dual to OSX(s′) in our notation), where X} = X r (IntN ∪ IntB4)
is the complement of a tubular neighborhood N of Σ and a ball B4 ⊂ X disjoint from
N . X} is viewed as a cobordism from S3 to M = ∂N , so that Fmix

X},s′} takes values in
HF+(M, t) ∼= Z. More precisely, ΦX,s′(ξx) and thus ΦX,s(x), or equivalently, OSX(s),
vanishes as it is the homogeneous part of Fmix

X},s′}(Θ−⊗ (ξx)) = ξFmix
X},s′}(Θ−⊗x), where

Θ− ∈ HF−(S3) is the generator in the upper dimension, and s′} = s′|X} (see the proof
of Lemma 5.6 of [OS4]). This contradicts to the assumption that s (and thus s′) is a basic
structure.

Applying these arguments to X#ΣY , we conclude similarly that if OSX#ΣY (s) 6= 0, for
s ∈ SpinC(X#ΣY ) such that s|Σ = sΣ, then s|X◦ is canonical, since otherwise Fmix

X◦#ΣY,s′◦
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and, thus, OSX#ΣY (s) vanish. ¤
A3(3) for SW invariants. The first step for SW invariants is like for OS invariants,

since the generalized adjunction inequalities look similar in the both theories (cf. [OS1],
[OS2] and [OS4]). Next, the Seiberg-Witten-Floer homology groups HFSW

∗ (M, t) ∼= Z,
(see [MW], Theorem 1.7), and so the action of AΣ considered in [CW] is trivial on this
group for the same reason as in the case of the OS invariants.

The final step goes also like in the OS-theory, but instead of Fmix
X},s′}(Θ− ⊗ x) we

consider the function φSW
X◦ (s′◦, x◦) from [CW], where X◦ = X r IntN , x◦ = x|X◦ and

s′X
◦ = s′|X◦ . To deduce vanishing of SWX,s′(ξx) we can use the product formula, in

Theorem 1.2 of [CW], which implies for X#ΣY = X◦ ∪ Y ◦ that

SWX#ΣY,s′(ξx⊗ y) = 〈[u]π1(φSW
X◦ (s′X

◦
, ξx)), π2(φSW

Y ◦ (s′Y
◦
, y))〉

and we can conclude that the product vanishes, because the first factor vanishes. ¤
3.4. The product formula A4. A4 is a reformulation of the well known product
formula [MST], Theorem 3.1 (note that the sign changes due to our convention on the
homology orientations in Remark 3 of section 1.3). Note only that the formula in [MST]
is stated for the version of the SW invariants corresponding to the case of RX = Z[U ],
which is not as general as RX = A∗X . It may be discussable if the arguments of [MST]
without essential changes are applicable to the most general case, but anyway, after [MST],
much more general gluing formulae were established, see for instance Theorem 1.2 in
[CW], which concerns 4-manifolds with an arbitrary boundary and contains A4 in the full
generality as a corollary.

In the case of OS invariants, A4 can be derived from the product formula [OS3],
Theorem 3.4, applied to the fiber sums, although it may look not so obvious as in the case
of SW invariants. To clarify it, we give some comments, which are basically extracted
from [OS3] and [OS4].

Puncturing a fiber sum, X = X−#ΣX+ = X◦
− ∪ X◦

+, at a pair of points, we obtain
X} = X}− ∪X}+ , where X}± = X◦

± r B4. X} can be viewed as a product of cobordisms
X}− : S3 → M ∼= S1 × Σ and X}+ : M → S3. The product formula [OS3], Theorem 3.4,
says

[F+

X}+ ,s}+
(Fmix

X}− ,s}−
(θ− ⊗ x−)⊗ x+)]0 =

∑

s|
X
}
±

=s}±

ΦX,s(x− ⊗ x+)

where s}± ∈ SpinC(X}± ), s}±|M = t, and [x]0 ∈ HF+
0 (S3) denotes the 0-dimensional

component of x ∈ HF+(S3).
We assume here that SpinC structure s}± is induced in X}± from s± ∈ SpinC(X±, sΣ),

and, thus, its restriction, t is the canonical SpinC structure determined by the SO2 reduc-
tion of τM . This implies, in particular, that HF+(M, t) ∼= Z [OS4], Lemma 5.5.

The duality between F+

X}+ ,s}+
: HF+(M, t) → HF+(S3) and F−

X}+ ,s}+
: HF−(S3) ∼=

HF−(−S3) → HF−(−M, t) ∼= HF−(M, t) (see Theorem 3.5 in [OS3]) implies that

[F+

X}+ ,s}+
(1⊗ x+)]0 = Fmix

X}+ ,s}+
(θ− ⊗ x+),

which gives

Fmix
X}+ ,s}+

(θ− ⊗ x+)Fmix
X}− ,s}−

(θ− ⊗ x−) =
∑

s|
X
}
±

=s}±

ΦX,s(x− ⊗ x+)
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On the other hand, applying the product formula [OS3], to X}± = X}± ∪N}± (Σ), viewed
as a product cobordism of X}± : S3 → M and N}± : M → S3, we obtain

Fmix
X}± ,s}±

(θ− ⊗ x±) =
∑

s|
X
}
±

=s}
ΦX±,s±(x±)

using that the second cobordism induces an isomorphism from HF+(M, t) ∼= Z to HF+
0 (S3)

(see [OS4], Theorem 5.3).
The structures s ∈ SpinC(X±) in the latter sum differ just by multiples of the class

σ ∈ H2(X±) Poincare-dual to [Σ], and, thus, have distinct degrees, d(s), since d(s+nσ) =
d(s) + nχ(Σ). In the other words, the latter formula is a decomposition of Fmix

X}± ,s}±
into

a sum of its homogeneous components (this idea was used in the proof of Lemma 5.6 in
[OS4]). Passing from ΦX,s to the dual OSX(s) and comparing the components of the
same degree, we obtain A4.

§4. Proof of Theorems 1.4.1

4.1. Independence of the choice of W . Consider a pair of Lefschetz fibrations,
Wi → S2, i = 1, 2, with a fiber Σ such that H1(Wi) = 0, and denote by ri ∈ SpinC(Wi, Σ)
the canonical structures. Let Yi = X#ΣWi and W = W1#ΣW2, then Z = X#ΣW ∼=
X#ΣW1#ΣW2

∼= Y1#ΣW2.

4.1.1. Proposition. For any r ∈ SpinC(X, Σ) we have

SY1(r#Σr1) = SZ(r#Σr1#Σr2) = SY2(r#Σr2)

Proof. Since the two equalities are analogous, we prove only the first one. Let W ◦
i =

Wi rNi, i = 1, 2, denote the complements of an open tubular neighborhood Ni of a fiber
Σ ⊂ Wi, and Y ◦

i = X#ΣW ◦
i , W ◦ = W ◦

1 #ΣW2. Applying Corollary 3.1.1 to a fiber sum
Y1#ΣW2 we obtain

SY1(r#Σr1) =
∑

h∈∆M

SZ((r#Σr1#Σr2) + h).

where M = ∂W ◦
2 and ∆M ⊂ H2(Z) is the image of H1(Σ) under the composition δM ◦

q∗ : H1(Σ) → H1(M) → H2(Z), like in 2.11.
Note that the sum in the above formula has only one non-vanishing term, namely,

with h = 0, because the restriction of any basic structure (r#Σr1#Σr2) + h to W ◦ should
coincide with r1#Σr2|W◦ according to A3(3) and 2.12.1. On the other hand, for h 6= 0 it
does not coincide, because of the following observation.

4.1.2. Lemma. The following composition is injective

H1(Σ)
q∗−−−−→ H1(M) δM−−−−→ H2(Z) −−−−→ H2(W ◦)

(the last map here is the inclusion homomorphism).

Proof. In the Poincare dual homology homomorphisms

H1(Σ) → H2(M) → H2(Z) → H2(W ◦, ∂W ◦)
14



a class h1 ∈ H1(Σ) is sent to the image of h2 = h1 × [S1] ∈ H2(Σ× S1) ∼= H2(M) under
the inclusion map H2(M) → H2(W ◦) composed with the relativization map H2(W ◦) →
H2(W ◦, ∂W ◦). The condition that H1(Wi) = H1(W ◦

i ) = 0 allows to find a cycle in
H2(W ◦) having non-vanishing intersection index with h2 in W , if h1 6= 0, thus proving
non-vanishing of the image of [h2] in H2(W ◦, ∂W ◦). ¤

4.2. Proof of Properties (1)–(5) in Theorems 1.4.1.
(1) This property is just A1 applied to X#ΣW .
(2) This holds by definition of the invariants in the case of Σ2 > 0.
(3) Note that the connected sum X#ΣW is the same as the sum X#−ΣW , where W is

the conjugate to W Lefschetz fibration. Axiom A2 implies that SX,Σ(r) = SX#ΣW (r#ΣrW,Σ)
is equal to ±SX#ΣW (r#ΣrW,Σ) where the conjugate SpinC structure r#ΣrW,Σ equals to
r#−ΣrW,Σ as follows from 2.12, and rW,Σ = rW,Σ, as remarked in 2.8. On the other
hand, using W to evaluate SX,−Σ(r), we obtain SX,−Σ(r) = SX#−ΣW (r#−ΣrW,Σ) that is
±SX,Σ(r).

(4) It follows immediately from Proposition 2.12.1 and A3(1), after we blowup X to
obtain a Lefschetz fibration from a pencil.

(5) It follows from Corollary 3.1.1 applied to the fiber sum X#ΣW , namely

SX(s) =
∑

r∈abs−1
X,Σ(s)

SX#ΣW (r#ΣrW,Σ) =
∑

r∈abs−1
X,Σ(s)

SX,Σ(r),

where rW,Σ ∈ SpinC(W,Σ) is the canonical relative SpinC structure of a Lefschetz fibration
and absX,Σ : SpinC(X, Σ) → SpinC(X) the forgetful map. ¤

4.3. Proof of the product formula (6). Consider a fiber sum X = X+#ΣX− and
Lefschetz fibrations W± → S2 with a fiber Σ and H1(W±) = 0. Put Y± = X±#ΣW±,
W = W+#ΣW−, and Z = X#ΣW ∼= Y+#ΣY−.

Choose a pair of structures r± ∈ SpinC(X±, Σ), denote by rW±,Σ ∈ SpinC(W±, Σ)
the canonical SpinC structures of the Lefschetz fibrations and let s± = r±#ΣrW±,Σ ∈
SpinC(Y±), s = r+#ΣrW+,Σ#Σr−#ΣrW−,Σ ∈ SpinC(Z). By Proposition 2.12.1, rW,Σ =
rW−,Σ ∨ rW+,Σ ∈ SpinC(W,Σ) is the canonical relative SpinC structure of the Lefschetz
fibration in W and thus s = (r+ ∨ r−)#ΣrW,Σ.

The product formula A4 applied to the fiber sum Z = Y+#ΣY− reads

∑

k∈Z
SY+(s+ + kσ+)SY−(s− − kσ−) =

∑

s′∈s+#s−

SZ(s′)

The sum in the right-hand side contains only one term SZ(s) which follows from the
arguments in 4.1. On the other hand, SX±,Σ(r± ± kσ±) = SY±(s± ± kσ±) and SX,Σ(r+ ∨
r−) = SZ(s) by definition.

Equivalence of the two formulations of the product formula in 1.4.1(6) follows from
that r′+ ∨ r′− = r+ ∨ r− if and only if r′± = r± ± kσ± for some k ∈ Z. ¤

4.4. Proof of the Adjunction inequality (7). The idea of the proof is to find an
appropriate Lefschetz fibration W → S2 with a fiber ΣW

∼= Σ having a membrane,
FW ⊂ W whose boundary, ∂FW matches with the boundary ∂F of membrane F ⊂ X.
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Then after gluing F and FW we can get a closed surface F̂ ⊂ X#ΣW , which will be
oriented if the orientations of ∂F and ∂FW do match.

More precisely, we should glue the complements X◦ and W ◦ of tubular neighborhoods
N ⊂ X of Σ and NW ⊂ W of ΣW so that F ∩ ∂N is glued to FW ∩ ∂NW . It is not
difficult to see that connectedness of Σ r ∂F guarantees that we can find such a gluing
map ∂N → ∂NW .

Finally, we want to make use of the adjunction inequality A5 for F̂ . This requires
F̂ 2 = F 2 + F 2

W > 0, which holds if we can find FW with a sufficiently big self-intersection
index. If we choose FW so that rW,Σ[FW ] = 0 for the canonical structure rW,Σ of the
Lefschetz fibration, then c1(r#rW,Σ)[F̂ ] = r[F ] + rW,Σ[FW ] = r[F ] and thus

−χ(F̂ ) = −χ(F )− χ(FW ) > F 2 + F 2
W + |r[F ]|

which gives (7) of Theorem 1.4.1 provided F 2
W = −χ(FW ). So, we reduced the problem

to constructing the following example of W and FW .

4.4.1. Proposition. Let Σ be a surface of genus g > 1, L ⊂ Σ an oriented curve
(possibly multi-component) with the connected complement ΣrL, and n ∈ N. Then there
exists a relatively minimal Lefschetz fibration p : W → CP1, with H1(W ) = 0, whose fiber,
Σ, has a membrane, FW ⊂ W , such that

(1) ∂FW = L (as an oriented curve),
(2) F 2

W = −χ(FW ),
(3) rW,Σ[FW ] = 0, where rW,Σ ∈ SpinC(W,Σ) is the canonical SpinC structure,
(4) −χ(FW ) > n.

4.5. Real Lefschetz fibrations. We will construct a complex algebraic Lefschetz fi-
bration p : W → CP2 endowed with a real structure, that is just an anti-holomorphic
involution (the complex conjugation in W ), c : W → W , which commutes with p and the
complex conjugation in CP1. The real locus, RW , of W is the fixed point set of c. For a
real fiber, Σ = p−1(b), b ∈ RP1, we let RΣ = Σ ∩ RW . A membrane FW in our example
will be the closure of a properly chosen connected component of RW r RΣ bounded by
RΣ. Such a choice guarantees the condition (2) of the Proposition 4.4.1, since the tangent
bundle to RW is anti-isomorphic to the normal bundle via the operator J : τX → τX of
the complex structure. The condition (3) follows from that the real determinant gives
a section trivializing the complex determinant bundle (and thus the associated SpinC

determinant), provided FW ⊂ RW is orientable.
Note furthermore that the pairs (Σ, L) are classified up to homeomorphism respecting

the orientations of Σ and L just by the genus g and the number of components, r 6 g, of
L, under our assumption that Σr L is connected. So, we will achieve (Σ,RΣ) ∼= (Σ, L),
that is the condition (1), if RΣ does not divide Σ into halves and has the required number
r of the components. This reduces Proposition 4.4.1 to the following construction.

4.5.1. Proposition. For any integers k ∈ N and g > r > 1, there exists a relatively
minimal real algebraic Lefschetz fibration, p : W → CP1, conjW : W → W , with H1(W ) =
0, and a real fiber Σ = p−1(b) of genus g such that

(1) RΣ has r components, and ΣrRΣ is connected,
(2) there is a connected orientable component of RW r RΣ, whose closure, FW , is

bounded by RΣ,
(3) g(FW ) > k.
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4.6. Proof of Proposition 4.5.1. Consider a double covering q : W → CP1 × CP1,
branched along a non-singular complex curve CA defined over R and having degree (2g +
2, 2d), where d is sufficiently large. The Lefschetz fibration that we need is the composition
of q with the projection to the first factor. A generic fiber, Σt = q−1(t× CP1), t ∈ CP1,
projects to CP1 as a double cover branched at (2g + 2) points, CAt = CA ∩ (t × CP1),
and thus has genus g. If this branching locus has 2r real points, RAt = CAt ∩RP1, then
Σt satisfies the condition (1) of Proposition 4.5.1.

k ovals
inside

surface F   of genus k
with r boundary
components

r-1 ovals
intersected by
a generator RP1

w

Figure 1

The conditions (2)–(3) will be obviously satisfied if we choose the curve RA and a
generator t × RP1 with the mutual position as on the Figure 1. The curve with such
position can be easily constructed by a perturbation of a nodal curve in CP1 × CP1

splitting into a union of generators. ¤

§5. Some generalizations

5.1. Symplectic summand W instead of a Lefschetz fibration. It is an interesting
question if the property A3(3) holds for arbitrary symplectic pairs (W,Σ), Σ2 = 0, which
are relatively minimal (no exceptional curves in X rΣ)). If so, then the class of possible
auxiliary summands in the definition of SX,Σ can be extended from Lefschetz fibrations to
such relatively minimal symplectic pairs (W,Σ), with b1(W ) = 0. Moreover, the second
part of the normalization property of Theorem 1.4.1(4) would also be extended from
Lefschetz fibrations to symplectic pairs.

5.2. Variants of SX,Σ. One can consider a version of the invariant SX,Σ,

SX,Σ,K : SpinC(X, Σ)/K → RX,Σ,K

which depends on a subgroup K ⊂ H1(Σ). Here SpinC(X, Σ)/K is the quotient of
SpinC(X, Σ) by the action of K, where h ∈ K acts as s 7→ s + δ(h), and δ : H1(Σ) →
H2(X, Σ) is the boundary homomorphism. The ring RX,Σ,K is A∗X,Σ,K = Λ(H1(X, Σ)/K)⊗
Z[U ] in the case of SX = SWX and A∗X,Σ,K ⊗ Z/2 in the case of SX = OSX . Consider-
ing the invariant in the reduced form, we let RX,Σ,K be just Z for SW and Z/2 for OS
invariants.

The definition of SX,Σ,K is similar to that of SX,Σ, except that the condition H1(W ) = 0
for a Lefschetz fibration W → S2 is replaced by the condition K = Im(H1(W ) → H1(Σ))
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(if K can be expressed as such an image). In particular, for K = 0, we have SX,Σ,K = SX,Σ

and for K = H1(Σ) the invariant SX,Σ,K coincides with the restriction, SX,sΣ , of the
absolute invariant SX .

In general, there is a splitting formula SX,Σ,K [s] =
∑

s′∈[s] SX,Σ(s′) or equivalently,
SX,Σ,K = (absK)∗(SX,Σ), where (absK)∗ is the push-forward morphism of the projection
absK : SpinC(X, Σ) → SpinC(X, Σ)/K. The proof of this formula is analogous to the
proof of (5) in Theorem 1.4.1.

5.3. A refinement of the Ozsváth-Szabó 4-dimensional invariant with respect
to a mapping torus boundary component. The idea used in the definition of SX,Σ

can be used also to define the refinement of the 4-dimensional Ozsváth-Szabó invariants
in a more general setting. Assume for instance that X : M0 → M1 is a cobordism between
3-manifolds, where M1 = Mf is a mapping torus of some homeomorphism f : Σ → Σ.

The plane field tangent to the fibers of the projection Mf → S1 defines a canonical
SpinC extension of the tangent bundle τM . Let SpinC(X,Mf ) denote the set of the relative
SpinC structures in X with respect to such SpinC extension over Mf ⊂ ∂X.

Choose any r ∈ SpinC(X,M1) and let s = abs(r) ∈ SpinC(X), and ti = s|Mi , i = 0, 1
(here t1 is the canonical structure on Mf ). Consider an auxiliary cobordism W : M1 → M2

which has structure of a Lefschetz fibration q : W → S1 × [1, 2] over the annulus, so that
Mi = q−1(S1 × i). There is a canonical relative SpinC structure, rW ∈ SpinC(W,M1),
which is a refinement of the canonical absolute structure sW = abs(rW ) ∈ SpinC(W ). We
assume that the Lefschetz fibration is relatively minimal and b1(W ) = 0 (one can always
find such a fibration bounded by any prescribed mapping tori Mi, i = 1, 2; for example
we may assume in addition that M2

∼= Σ× S1).
The homomorphism

F+
X,r : HF+(M0, t0) → HF+(M1, t1) ∼= Z

is defined as the composition of F+
X∪W,rrW

: HF+(M0, t0) → HF+(M2, t2) and the inverse
(F+

W,sW
)−1 to the isomorphism F+

W,sW
: HF+(M1, t1) → HF+(M2, t2).

The action of H1(X ∪W ) = H1(X ∪W,W ) = H1(X, M1) in F+
X∪W,rrW

composed with
the isomorphism (F+

W,sW
)−1 defines an action of AX,M1 in FX,r.

The product formula of [OS3] applied to the cobordism X ∪ W : M0 → M2 implies
a splitting F+

X,s =
∑

r∈abs−1(s) F+
X,r. Similarly one can define maps F−X,r and Fmix

X,r and
obtain analogous decompositions of F−X,s and Fmix

X,s .
All the constructions in this section admit also similar versions for SW invariants.
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